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ABSTRACT

Percutaneous coronary intervention is a minimally-invasive procedure to treat coronary artery disease. In such
procedures, X-ray angiography, a real-time imaging technique, is commonly used for image guidance to identify
lesion sites and navigate catheters and guide-wires within coronary arteries. Due to the physical nature of X-ray
imaging, photon energy undergoes absorption when penetrating tissues, rendering a 2D projection image of a
3D scene, in which semi-transparent structures overlap with each other. The overlapping structures make robust
information processing of X-ray images challenging. To tackle this issue, layer separation techniques for X-ray
images were proposed to separate those structures into different image layers based on structure appearance
or motion pattern. These techniques have been proven effective for vessel enhancement in X-ray angiograms.
However, layer separation approaches still suffer either from spurious structures or non-real-time processing,
which prevent their application in clinics. Purpose of this work is to investigate whether vessel layer separation
from X-ray angiography images is possible via a data-driven strategy. To this end, we develop and evaluate a
deep learning based method to extract the vessel layer. More specifically, U-Net, a fully convolutional network
architecture, was trained to separate the vessel layer from the background. The results of our experiments show
good vessel layer separation on 42 clinical sequences. Compared to the previous state-of-the-art, our proposed
method has similar performance but runs much faster, which makes it a potential real-time clinical application.
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1. INTRODUCTION

1.1 Motivation

Percutaneous coronary intervention (PCI) is a minimally-invasive procedure to treat coronary arteries disease.
In such procedures, a catheter with a pre-mounted stent is introduced to the lesion site through the femoral or
radial artery; during such procedures, X-ray angiography is used to visualize the blood vessels, and enables
clinicians to navigate catheters and guidewires within the coronary artery. Since X-ray image formation is based
on photon energy absorption of various tissues along the rays, the image can be seen as a superposition of 2D
projections of 3D anatomical structures, such as spine, lung and heart, which become opaque or semi-transparent
structures in X-ray images. These structures normally overlap with each other, which makes robust information
processing in X-ray angiograms difficult.

1.2 Related works

Layer separation techniques were introduced to separate structures in X-ray images into different layers so
that each layer contains structures of similar appearance or motion pattern. Existing layer separation methods
for X-ray fluoroscopic sequences can be generally grouped into two classes:1 motion-based methods23 which rely
on estimation of the layered motion, and motion-free approaches1456 that do not require to estimate the layered
motion.
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Among motion-based methods, Zhang et al.2 proposed a method to separate each fluoroscopic image into a
static layer, a slow movement layer and a fast movement layer based on the observation that different anatomical
structures have various motion patterns. Similarly, Zhu et al.3 developed a method separating each fluoroscopic
image into a background layer and a coronary layer based on a Bayesian framework which combined dense motion
estimation, uncertainty propagation and statistical fusion together.

In motion-free methods, the background layer and/or foreground (vessel) layer of each fluoroscopic image are
modeled under certain hypotheses. Tang et al.5 proposed an approach which was based on an assumption that
the vessel layer and background layer are reconstructed from independent signals and then utilized independent
componet analysis (ICA) to solve the problem. A method based on the robust principal component analysis
(RPCA), which was used to detect and track the stent graft delivery device automatically in 2D fluoroscopic
sequences, was proposed by D. Volpi et al.6 Similarly, Ma et al.1 proposed a background modelling based
approach which separates an X-ray angiogram sequence into a breathing layer, a quasi-static layer and a vessel
layer using morphological closing and online robust PCA (OR-PCA) proposed by Feng et al.7 This method is
one of the few that run online, which takes one frame as input each time and updates the background model
based on the frame. Compared to its parental offline approach proposed by Ma et al.,4 this method showed
similar performance and achieved a processing rate up to 6 frames per second (fps), which is still slower than
common image acquisition rates (7.5-15 fps).

The purpose of this work is separating vessel layer from X-ray angiograms. We intend to model the task
as an image-to-image mapping problem, particularly, from the domain of the original X-ray angiogram to the
domain of the layer that contains mainly the vessel structures.

Recently, deep learning approaches such as fully convolutional networks (FCNs)89 have been developed to
find such mappings. A FCN is a deep learning network architecture that has no fully connected layers. Unlike
traditional convolutional neural network (CNN) for classification tasks, FCN outputs an image that has the same
size as the input image(s). Typical FCNs contain a encoding path, which is similar to traditional CNNs to encode
image features, and decoding path which map the learned features to pixel-wise information, e.g. a semantic
segmentation map. The deep network structure consists of many convolutional layers that allows learning more
powerful image representation which serves as a key to success on many object classification and segmentation
tasks. Among the various FCN architectures, Noh, H. et al.9 proposed a FCN consisting of a convolution
part and a deconvolution part to segment RGB images. The convolution part extracts features from input and
transforms to feature representations, whereas the deconvolution part reconstructs the object segmentation from
the feature representations. Similarly, U-Net10 connects features that are learned from the encoding path to
the decoding path to facilitate feature decoding and pixel-wise information reconstruction on different scales
with skip connections. This network architecture has shown exceptional performances of segmentation tasks of
biomedical images,10 but it has not been explored yet to what extent it can be applied to other tasks such as
vessel layer separation.

1.3 Overview and contributions

The purpose of this work is to develop a robust layer separation method that can run in real-time, so as
to be clinically applicable. In particular, we focus on vessel layer separation directly, as this layer contains
most structures of interest, such as coronary arteries, guiding catheters and guidewires. The basic idea of this
work makes use of the recent advances in deep learning which has shown good performance on many computer
vision tasks and medical imaging applications. Particularly, U-Net,10 a fully convolutional network was used for
separating the vessel layer from X-ray angiograms, which runs online and real time. We also proposed a weight
mask for each training sample by morphologically dilating the inverted gray level of the reference vessel layer to
calculate the training loss and let the network focus on learning features from the vessel area.

2. METHOD

2.1 Network architectures

In this work, the architecture of U-Net introduced by Ronneberger, O. et al.10 was utilized to map from
original X-ray angiograms to vessel layer images. As shown in Figure 1, firstly, the resolution of input images is
512×512; secondly, each convolution block has two 3×3 convolution layers with a ReLU (Rectified Linear Unit)



activation; thirdly, max pooling with stride 2 was used between convolution blocks in the encoding path and an
upconvolution layer was used to connect two successive convolution blocks in the decoding path, which consists
of an upsampling operation followed by a 2 × 2 convolution without ReLU; lastly, the final read-out layer has
one 1× 1 convolution filter with a Sigmoid activation, outputting the vessel layer image with size 512× 512.
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Figure 1. U-Net architecture. Left part and right part indicate the encoding path and decoding path, respectively. Each
box indicates a feature map; the number on top of each box denote the number of feature maps; the number at the lower
left edge of each box is the size of corresponding feature maps; different color arrows denote different operations (black
arrow: 3 × 3 convolution with a ReLU activation, blue arrow: max pooling with stride 2, green arrow: skip connection,
red up arrow: upsampling operation followed by a 2 × 2 convolution without ReLU, red right arrow: 1 × 1 convolution
filter with a Sigmoid activation); the orange boxes in the decoding path represent corresponding copied feature maps from
the encoding path.

2.2 Learning target

In this work, we did not follow the way in many previous works that let a network to fit to human-annotated
labels. As the exact pixel values are usually not clearly defined in saliency maps, such as the vessel layer of X-ray
angiogram images, which makes it difficult to obtain the “ground truth” vessel layer with human annotation, we
employed the method proposed by Ma et al.4 to generate the vessel layer as the target of our learning task. The
parameter setting described by the authors was also used in our study.

2.3 Loss function

A data set (x,y) is employed to train the network, in which x is the input that is the original X-ray angiograms
in this work, and y denotes the corresponding reference vessel layers (learning target). Let f(x, θ) denote U-Net
as a mapping function, in which θ is the learnable parameters of U-Net. The problem can be formulated as
ŷ = f(x, θ), in which ŷ denotes the separated vessel layer output by U-Net. Then, the vessel layer separation
problem requires to find the optimal parameter θ which minimizes a loss function representing the difference
between ŷ and the learning target y.

Let y and ŷ denote samples drawn from probability distribution p(y) and p(ŷ), respectively. The normalized
pixel value of each pixel in both original angiogram and the corresponding reference image can be regarded as



the probability of that pixel belonging to the background and the probability of that pixel belonging to the blood
vessel is one minus the normalized pixel value.11

To quantify the difference between the prediction and the learning target, we use binary cross entropy (BCE)
shown in Equation (1):

BCE = − 1

w × h

w∑
i=1

h∑
j=1

[(1− yi,j) log(1− ŷi,j) + yi,j log ŷi,j ] (1)

in which, (w, h) is the size of the image; yi,j and ŷi,j denote the probability of the pixel belonging to the
background for the labeled and predicted pixel, respectively.

Original

Reference

Figure 2. Examples of original angiogram and the corresponding reference vessel layer: (First Row) the original X-ray
angiogram; (Second Row) the reference vessel layer generated by the method of Ma et al.4

From the reference images in Figure 2, it can be seen that the vessel structures possess a small area in the
complete image, while the background area takes up the majority; in other words, information from the vessel
and background are imbalanced. To offset the imbalance of prevalence of vessel pixels and background pixels12

and let the network focus on learning features from the vessel area, we created a weight mask for each training
sample by morphologically dilating the inverted gray level of the reference vessel layer, so as to weight the vessel
pixels more. An example of weight mask is shown in Figure 3. Using the weight mask, another loss function,
weighted binary cross entropy (ωBCE) is shown in Equation (2):

ωBCE = − 1

w × h

w∑
i=1

h∑
j=1

ωi,j [(1− yi,j) log(1− ŷi,j) + yi,j log ŷi,j ] (2)



in which, ωi,j is the pixel value at location (i, j) of the weight mask.

Original Image Reference Weight Mask

Figure 3. An example of original angiogram, reference image, weight mask: (left) the original X-ray image; (middle) the
reference vessel layer; (right) the weight mask generated from the reference image with morphological dilation; The weight
mask was used to calculate the training loss.

2.4 Utilization of temporal information

Because X-ray angiograms are time-series data, to take the advantage of the temporal information contained
in the data set, apart from the original X-ray images, we also use difference images as additional input channels.
This is expected to ignore the static structures and let the network focus on moving objects. Firstly, the difference
image between the current frame and its previous frame as Channel 1 (Ch1); secondly, the other difference image
which is the current frame minus the first frame as Channel 2 (Ch2); With these images, we constructed two
different types of inputs for the network: the two-channel input (2Ch), which uses the original X-ray images
(Channel 0) and Ch1, and the three-channel input (3Ch) with all three channels. An example of each channel
input from clinical angiogram is shown in Figure 4.

Channel 0 Channel 1 Channel 2

Figure 4. An example of each channel input from clinical angiogram. (left) the current frame; (middle) the current frame
minus its previous frame; (right) the current frame minus the first frame.

3. EXPERIMENTS

3.1 Data set

Two types of data set were used in our experiments: clinical X-ray angiograms (XA) and synthetic low-
contrast XA. Each dataset was divided into a training set, a validation set and a test set. The training set
contains 2892 images from 26 sequences, the validating set contains 924 images from 6 sequences, and the test
set contains 1068 images from 10 sequences.



3.1.1 Clinical X-ray angiograms

The same clinical X-ray angiograms used by Ma et al.1 were used in this work. All images were resized to
512× 512 as the network input, and the pixel values were normalized to the range between 0 and 1.

3.1.2 Synthetic low-contrast X-ray angiogram

Contrast agent for vessel visualization may cause kidney diseases or allergic reactions,13 so the dose of the
contrast agent used in clinical application should be under control to ensure clear visualization while not causing
harm to patients. To assess if our proposed method may be used to decrease contrast agent concentrations, we
evaluate the performance of our methods on low-contrast data, and the method proposed by Ma et al.1 was used
to synthesize a 80% amount contrast data set and a 50% amount contrast data set. Both the two data set were
preprocessed following the same procedure in section 3.1.1.

3.2 Evaluation metrics

To quantify the performance of vessel layer separation, the contrast-to-noise ratio (CNR) defined in Equation
(3) was employed as one evaluation metric, which indicates the normalized difference between the average pixel
value of the foreground and background. To evaluate the CNR for global and local scale, we adopted the
foreground and background masks defined in Ma et al,1 which are shown in Figure 5.

CNR =
| µF − µB |

σB
(3)

in which, the mean of foreground and background pixel values are denoted by µF and µB ; the standard deviation
of the background pixel values is denoted by σB . The global CNR measures the relation of the contrast between
foreground and the whole background pixel intensities to the standard deviation of the whole background pixel
intensities. On the other hand, the local CNR demonstrates the relation of the contrast between foreground
and partial background surrounding the foreground pixel intensities to the standard deviation of the partial
background pixel intensities.

In addition to CNR, which evaluates the contrast in a single image, we also adopt Structural SIMilarity

Foreground Global Background Local Background

Figure 5. An example of foreground and background proposed by Ma et al.1 (left) foreground (white area); (middle)
global background (white area); (right) local background (white area).

(SSIM) proposed by Wang et al.14 to quantify the similarity between the predicted image and the reference
image, in which the luminance, contrast and structure similarities between a reference image and a predicted
image were measured independently and then all the luminance, contrast and structure similarities were combined
for calculating the total similarity. The definition of SSIM follows Equation (4).

SSIM =
(2µtµp + C1)(2σtp + C2)

(µ2
t + µ2

p + C1)(σ2
t + σ2

p + C2)
(4)



in which, µt and µp are the means of the reference image and the corresponding prediction image, respectively; σ2
t

and σ2
p are the corresponding variances; σtp is the covariance between the reference image and the corresponding

prediction image; C1 = (K1L)2 and C2 = (K2L)2, where K1 = 0.01, K2 = 0.03 proposed by Wang et al.14 were
adopted here, and L is the range of the pixel value, i.e. 1 in our work. Mean SSIM (MSSIM) is the average
SSIM of Q pairs of images, which is defined by Equation (5).

MSSIM =
1

Q

Q∑
k=1

SSIMk (5)

To compare the similarity between the reference image and the prediction of the network in vessel area and
the whole image, we also adopted the foreground and background masks (Figure 5) defined in Ma et al1 to
calculate the global MSSIM (the whole image) and local MSSIM (the vessel area).

3.3 Experiment 1: hyper parameters tuning

The optimal hyper-parameter setting needs to be found, such as learning rate, epoch number for training,
network architecture, number of filters. We searched the optimal hyper-parameters by comparing the average
CNR, MSSIM and prediction examples between different hyper-parameter settings in the following way: first, we
tuned the hyper-parameters with ωBCE loss function using two-channel input. After doing several pilot experi-
ments with arbitrarily chosen hyper-parameter settings, we selected a combination of these hyper parameters as
a reference, which is shown in the second row of Table 1, and then arranged four sub-experiments (Ex1-Ex4) to
find the optimal learning rate, epoch number, network architecture, and number of filters of the first convolution
layer. In all the sub-experiments of Table 1, the weight mask of ωBCE loss function were generated by the
corresponding reference image of the training data with the steps described as below:

Step1: Invert the pixel value of the reference image to make the vessel area with larger pixel value than the
background;

Step 2: Dilate the resulted image from step 1 using a 3× 3 square kernel;
Step 3: Normalize the pixel value of the weight mask in the range from 0 to 1.

Table 1. Sub-experiments of Hyper parameters selection with ωBCE loss function. UNet7 is an alternative architecture
of U-Net as shown in Figure 6 and UNet9 is as shown in Figure 1.

Experiment Learning rate Epoch No. Architecture Filter No. (f)

Reference 1e-5 50 UNet9 16

Ex1 1e-3, 5e-5, 5e-4 50 UNet9 16

Ex2 1e-5 30, 70 UNet9 16

Ex3 1e-5 50 UNet9 8, 32

Ex4 1e-5 50 UNet7 8, 16, 32

To compare the performances between two-channel and three-channel input, after finding the best hyper
parameter combination for the ωBCE loss function based on two-channel input, another sub-experiments was
conducted by replacing two-channel input with three-channel input.

3.4 Experiment 2: Compare with other methods

The best ωBCE method was compared with one of the best method proposed by Ma et al.1 using CNR as the
evaluation metric, which is the OR-PCA method with closed-form solution (CF) as the subspace basis updating
strategy and sliding window (SW) as the past information downweighting technique (SW + CF ). The optimal
parameters of SW +CF method are as below: the intrinsic rank of the subspace basis r = 5, the regularization
parameters λ1 = λ2 = 2.1 and the window size t0 = 3.
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Figure 6. An alternative architecture of U-Net.

3.5 Experiment 3: performance of low contrast data

As shown in Table 2, to evaluate the performances of our methods on low contrast data, we replaced the
clinical X-ray angiograms with a 80% amount contrast data set (80%) and a 50% amount contrast data set (50%),
respectively. The reference are the same as those in Experiment 1. Because the vessels in the low contrast data
are subtle, especially in the 50% amount contrast data set, we employed three-channel input to train, evaluate
and test the network in addition to two-channel input.

Table 2. Sub-experiments of Hyper parameters selection with low contrast data (50% and 80%, respectively).

Experiment Loss Function Epoch No. Data Set

Ex5 ωBCE 50, 70 2Ch, 3Ch

3.6 Implementation

The network was trained and evaluated on the Dutch national supercomputer with an NVIDIA Tesla K40m
GPU using Keras with Tensorflow as the backend. The network parameter θ were trained using an ADAM
optimizer.15

4. RESULTS AND DISCUSSION

4.1 Optimal hyper parameters

Three of the best hyper parameter combinations based on the ωBCE loss function are shown in Table 3 and
the corresponding average CNR and MSSIM are shown in Figure 7 and Table 4. For the architecture, UNet9
is similar to UNet7 in terms of CNR and MSSIM, but there are much less parameters in UNet7, so there is a
trade-off between performance and speed. If the compute capability of GPUs is limited, we can choose UNet7
and get acceptable results. For the input, both 2Ch and 3Ch got similar performance. The reason may be that
the vessel structure is very clear in the clinical angiograms as can be seen in Figure 2, so the two-channel input
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Figure 7. Average CNR and MSSIM of various ωBCE methods

is adequate to achieve results similar to the three-channel input. Figure 8 illustrates two prediction examples
of the three hyper parameter combinations listed in Table 3; it also shows that the predictions of our ωBCE
methods are worse than the reference image, especially in the background area. The catheter in the predictions
in row 1 and the spine structures in row 2 are visible, which may be because both catheter and spine in the
original angiograms are similar in both structure and colour to the vessel.

Table 3. Three of the best hyper parameter combinations of ωBCE loss function.

Learning rate Epoch No. Architecture Filter No. (f) Dataset

1e-5 50 UNet7 16 2Ch

1e-5 50 UNet9 16 2Ch

1e-5 50 UNet9 16 3Ch

Table 4. The average CNR and MSSIM of various ωBCE methods. (mean ± standard deviation)

Method Local CNR Global CNR Local MSSIM Global MSSIM

Reference 2.976±1.289 4.739±2.021 1 1

UNet7-2Ch 2.866±1.282 4.336±1.905 0.835±0.069 0.864±0.047

UNet9-2Ch 2.935±1.342 4.543±1.930 0.862±0.058 0.878±0.041

UNet9-3Ch 2.878±1.392 4.551±2.023 0.847±0.063 0.870±0.042

We also assessed whether the hyper parameter combinations are statistically significantly different in terms
of average CNR and MSSIM, for which we employed a two-sided Wilcoxon signed-rank test.16 The results are
shown in Table 5, in which, UNet7 is statistically significantly different from both the two UNet9 hyper parameter
combinations except local CNR; the two UNet9 hyper parameter combinations are not statistically significantly
different except MSSIMs.



In summary, the second row of Table 3 (UNet9-2Ch) is the optimal hyper parameter combination among all
the combinations listed in Table 1 for our project based on ωBCE loss function.

Original Reference U-Net7 2Ch U-Net9 2Ch U-Net9 3Ch

Figure 8. Two Prediction Examples of various ωBCE methods

Table 5. p-values among various ωBCE loss function methods in terms of CNR and MSSIM.

Method 1 Method 2 Local CNR Global CNR Local MSSIM Global MSSIM

UNet7-2Ch UNet9-2Ch 0.114 <0.001 <0.001 <0.001

UNet7-2Ch UNet9-3Ch 0.632 0.001 0.003 0.044

UNet9-2Ch UNet9-3Ch 0.084 0.694 0.001 0.040

4.2 Comparing with other methods

Figure 10 shows examples of vessel layer separation using two different methods. Two frames (the first and
second Row) from two different sequences qualitatively exhibit the performances of our methods (ωBCE) and
the method SW +CF presented by Ma et al.1 These results show that the performance of our method are close
to the reference image (the second column) and the method of Ma et al1 (the last column). Compared to the
work of Ma et al,1 the background obtained with our method contains fewer structures, although the vessel area
seems slightly worse.

The ωBCE method has similar CNR measures to the reference image. Compared to the method of Ma et
al,1 our method has superior performance on global CNR, but slightly worse on local CNR, as shown in Figure
9 and Table 6. This may be because there are less dark structures in the predictions of our method as shown in
Figure 10, which decrease σB and increase µB , resulting in the increase of global CNR. For local CNR, µF of our
method are larger than that of the method of Ma et al,1 which decreases | µF − µB |, leading to the decrease of
local CNR. In terms of the processing speed, the proposed method achieves a rate of about 18 fps thanks to the
use of a GPU. This is faster than the common image acquisition rate in clinics (15 fps). This result demonstrates
potential for a real-time clinical application.

The Wilcoxon signed-rank test16 was done to compare the performance between our ωBCE method and the
SW + CF method proposed by Ma et al1 according to 10 pairs samples. The p-values of local and global CNR
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Figure 9. Average CNR of various methods

Table 6. Average CNR of various methods. (mean
± standard deviation)

Method Local CNR Global CNR
ωBCE 2.935±1.342 4.543±1.930

Ma et al1 3.090±0.987 4.208±1.367

Original Image Reference ωBCE Ma et al1

Figure 10. Comparison of our proposed method to the method of Ma et al1 on two examples

are 0.185 and 0.262, respectively, so there is no statistically significant difference between the two methods in
terms of local and global CNR.

4.3 Low contrast data

Channel 1 and channel 2 shown in Figure 4 enhance the vessel structure. We therefore utilized three-channel
input to train, evaluate and test low contrast data (50% and 80%) in addition to two-channel input. The
performance of three-channel input is better than that of two-channel input. The optimal hyper parameters
combination for both 50% and 80% dataset based on ωBCE loss functions is shown in Table 7.

Figure 11 illustrates an prediction example using different contrast data based on the ωBCE method. The
first, second and third row are from clinical angiogram, synthesized 80% contrast data and synthesized 50%
contrast data, respectively. Columns from left to right show the original image, reference image, predictions of
the optimal ωBCE method, respectively. The catheter in all the predictions was not totally removed compared
to the reference image, which may be because the vessel and the catheter are similar in colour and structure,
and it is difficult for the network to distinguish them. The static structures in the prediction increased as the



Table 7. The optimal hyper parameters combination for both 50% and 80% dataset of ωBCE loss function

Learning rate Epoch No. Architecture Filter No. (f) Dataset

1e-5 70 UNet9 16 3Ch

concentration of the contrast agent decreased, which may be also because the similarities in colour and structure
between vessel and static structures increased. The predictions of 80% data are nearly the same as the predictions
of clinical data, although the vessel in the synthesized 80% contrast data is more subtle than that in clinical
data. The reason may be that the vessel color is still different from the colour of the most static structures in
80% data. For 50% contrast data, the vessel was enhanced.

As shown in Figure 12 (left part) and Table 8, both clinical angiogram and low contrast data (50% and 80%)

Table 8. Average CNR and MSSIM of different dataset, the numbers 1, 0.8 and 0.5 indicate clinical angiogram, synthesized
80% contrast and 50% contrast data, respectively. (mean ± standard deviation)

Method Local CNR Global CNR Local MSSIM Global MSSIM

Reference 2.976±1.289 4.739±2.021 1 1

ωBCE1 2.935±1.342 4.543±1.930 0.862±0.058 0.878±0.041

ωBCE0.8 2.947±1.371 4.581±2.077 0.880±0.055 0.866±0.037

ωBCE0.5 3.072±1.472 4.620±2.112 0.828±0.060 0.797±0.041

achieved nearly the same global and local CNR as the reference image, while the prediction examples in Figure
11 are different from the reference. The reason may be that the existence of the catheter and static structures in
the predictions decreases µB and increases σB simultaneously, which makes CNR nearly unchanged. Figure 12
(right part) and Table 8 shows the MSSIM, the local and global MSSIM of both clinical data and 80% contrast
data are nearly the same, but 50% data achieved slightly low MSSIM than the other two dataset.

Table 9. p-values between clinical angiogram, synthesized 80% contrast data and synthesized 50% contrast data using
ωBCE loss function method, respectively, in terms of CNR and MSSIM.

Method 1 Method 2 Local CNR Global CNR Local MSSIM Global MSSIM

ωBCE1 ωBCE0.8 0.182 0.211 0.0760 0.434

ωBCE1 ωBCE0.5 0.050 0.478 <0.001 <0.001

The Wilcoxon signed-rank test16 was also utilized to compare the performance between clinical and low con-
trast dataset, the results of which are shown in Table 9. There is no statistically significant differences between
clinical angiogram and synthesized 80% contrast data, although the CNR of synthesized 80% contrast data is
lower than that of clinical angiogram.

Table 9 also shows that there are statistically significant differences between clinical angiogram and syn-
thesized 50% contrast data in terms of both local and global MSSIM. Clinical angiogram and synthesized 50%
contrast data have no statistically significant difference in terms of CNR, although the CNR of synthesized 50%
contrast data is much lower than that of clinical angiogram, which indicates that ωBCE method can enhance
the vessel layer.
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Figure 11. A prediction example of different data with respective optimal methods, 1st Row: Clinical angiogram; 2nd

Row: synthesized 80% contrast data; 3rd Row: synthesized 50% contrast data; 3rd Column: ωBCE loss function.
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Figure 12. Average CNR and MSSIM of different dataset, the numbers 1, 0.8 and 0.5 indicate clinical angiogram, synthe-
sized 80% contrast and 50% contrast data, respectively.

5. CONCLUSION

We have presented a data-driven method to separate vessel layer from cardiac interventional X-ray angiograms
for vessel enhancement. The method uses a fully convolutional network to map the original X-ray image to a vessel
layer image in which vessel structures have better visibility. We trained the network with automatically generated
images of the vessel structure, the experimental results show that our proposed method is able to compute the



vessel layer and enhance vessel structures. The proposed method shows an improved CNR compared to the
original X-ray images, and has a performance that is similar to the state-of-the-art method. As the proposed
method has a processing rate of about 18 frames per second, it has potential for real-time clinical application.
We also investigated the performance of our method on low contrast dataset and the performance on the 80%
contrast dataset is nearly the same as the clinical angiograms, which indicates a potential to reduce the dose of
contrast agent in coronary interventions.
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