
Automatic Online Layer Separation for Vessel Enhancement in X-ray
Angiograms for Percutaneous Coronary Interventions†,††

Hua Maa, Ayla Hoogendoornb, Evelyn Regarc,d, Wiro J. Niessena,e, Theo van Walsuma

aBiomedical Imaging Group Rotterdam, Erasmus MC, University Medical Center Rotterdam, The Netherlands
bDepartment of Cardiology, Biomedical Engineering, Erasmus MC, University Medical Center Rotterdam, The Netherlands

cDepartment of Cardiology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
dHeart Center, University Hospital Zurich, Switzerland

eQuantitative Imaging Group, Faculty of Applied Sciences, Delft University of Technology, The Netherlands

Abstract

Percutaneous coronary intervention is a minimally invasive procedure that is usually performed under image
guidance using X-ray angiograms in which coronary arteries are opacified with contrast agent. In X-ray im-
ages, 3D objects are projected on a 2D plane, generating semi-transparent layers that overlap each other. The
overlapping of structures makes robust automatic information processing of the X-ray images, such as vessel
extraction which is highly relevant to support smart image guidance, challenging. In this paper, we propose an
automatic online layer separation approach that robustly separates interventional X-ray angiograms into three
layers: a breathing layer, a quasi-static layer and a vessel layer that contains information of coronary arteries
and medical instruments. The method uses morphological closing and an online robust PCA algorithm to sep-
arate the three layers. The proposed layer separation method ran fast and was demonstrated to significantly
improve the vessel visibility in clinical X-ray images and showed better performance than other related online
or prospective approaches. The potential of the proposed approach was demonstrated by enhancing contrast
of vessels in X-ray images with low vessel contrast, which would facilitate the use of reduced amount of
contrast agent to prevent contrast-induced side effects.
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1. Introduction

1.1. Motivation

Percutaneous coronary intervention (PCI) is a
minimally invasive procedure for patients with ad-
vanced coronary artery disease. In this procedure, a
stent pre-mounted on a delivery catheter is advanced
over a guide-wire and through a guiding catheter at
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the site of narrowing in a patient’s coronary arter-
ies. Once the lesion site is reached, the delivery
balloon is inflated and the stent is deployed against
the coronary wall, assuring optimal patency of the
artery. As there is no direct eyesight on the target
area, these procedures are commonly performed un-
der image guidance using X-ray angiography (XA),
where coronary arteries are visualized with X-ray
contrast agent. During the intervention, clinicians
use XA images to navigate catheters and guidewires
inside the patients.

As XA images contain useful information on
anatomy and instrument position, many works have
been published on extracting relevant information to
improve the image guidance for cardiac interven-
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tions. For example, Panayiotou et al. (2014) have
developed a retrospective motion gating technique of
interventional X-ray images through vessel extrac-
tion. Also using the information of vessels, pre/intra-
operative information fusion between CT angiogra-
phy and XA have been reported in Baka et al. (2013)
and Rivest-Henault et al. (2012). Apart from vessels
in XA, there is interest to track structures such as
the lungs, catheters and guidewires. Shechter et al.
(2005) have used the position of diaphragm as an in-
dicator of respiratory phase and constructed a patient
specific coronary motion model based on that. In
Baka et al. (2015), the position of guiding catheter
tip has been related to the combination of respiratory
and cardiac motion.

Since X-ray images are projections of 3D struc-
tures on a 2D plane, the image content can be inter-
preted as a composition of several opaque or semi-
transparent structures, which have different appear-
ances and motion patterns. The overlapping nature of
the structures makes automatic analysis of XA chal-
lenging. Separating the structures from each other
enables visualizing and analyzing different structures
independently, which would, therefore, potentially
facilitate the information processing of XA. For ex-
ample, vessel extraction using Hessian-based filter-
ing method in XA is often hampered by non-vascular
structures, such as guiding catheters, diaphragm bor-
der and vertebral body edges, because of their tubular
or curvi-linear appearance in XA. Separating non-
vascular structures would improve the visibility of
vessels and promote automatic vessel extraction that
would ultimately facilitate the image guidance dur-
ing interventions.

In the context of this work, we interpret the pro-
cess of separating those structures in XA images as
a separation of a set of additive 2D layer images
which add up to the original image, and each of them
has different structures. The purpose of this work
is to develop and evaluate a fast method that can
run prospectively for the effective and efficient sep-
aration of the structures on different layers for XA
sequences. Following the terminology from earlier
works (in Section 1.2), we adopt the term “layer sep-
aration” to refer to the separation of structures and
putting them in different layers.

1.2. Related works
Existing methods for layer separation for X-ray

fluoroscopic sequences can be categorized into two
approaches: motion-based and motion-free .

Motion-based layer separation methods treat each
frame of an X-ray fluoroscopic sequence as the out-
come of the motion of each layer. Hence, the key part
of obtaining the layers in these methods is estimating
the motion of every layer. Various assumptions on
the type of motion have been proposed. For instance,
Close et al. (2001) have estimated translation, rota-
tion and scaling for each layer in a region of interest.
The layers are computed by transforming each frame
with the estimated motion and averaging the trans-
formed frames. This method computed a total of four
layers for a sequence. Zhu et al. (2009) have pro-
posed a two-layer separation scheme. They have de-
veloped a Bayesian framework that combines dense
motion estimation, uncertainty propagation and sta-
tistical fusion to achieve layer separation. In a three-
layer separation approach proposed by Zhang et al.
(2009), a multi-scale framework has been developed
based on different motion patterns for the static back-
ground, lung and vessels. In this work, a dense mo-
tion field of each layer has been constructed using
thin plate splines. Fischer et al. (2015) have further
extended this method by introducing a regularization
term for layers with a Bayesian model to aid layer
separation. In particular, they have proposed to use a
robust data term and edge-preserving regularization.
In the work of Auvray et al. (2009), a joint layer seg-
mentation and parametric motion estimation scheme
has been proposed for transparent image sequences.
Similarly, Preston et al. (2013) jointly estimated lay-
ers and their corresponding smooth deformation to
model the non-smooth motion observed in a fluo-
roscopic sequence. A total variation based regular-
ization was used to encourage sparsity of gradients
within and across the layer images.

Unlike motion-based methods, motion-free ap-
proaches do not require estimating the motion of lay-
ers. Instead, they directly model the background
layer or/and foreground (vessel) layer of an image
sequence under certain hypotheses. One of the sim-
plest ways of modeling the background of XA is
computing the median of several frames in a se-
quence, and obtaining the foreground by subtract-
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ing the median image from the original frames (see
Baka et al. (2014)). This method worked well for
the background that is entirely static, but generates
artefacts when there are moving objects in the back-
ground, e.g. diaphragm in XA. A more advanced
method has been proposed by Tang et al. (2012) in
which they assumed that the vessel and the back-
grounds generate independent signals that are mixed
in a sequence, so that the vessel-background sep-
aration becomes a blind source separation problem
that is commonly solved by independent component
analysis (ICA, Hyvärinen et al. (2004)).

Apart from ICA, robust principal component anal-
ysis (RPCA) is also a common approach for source
decomposition. One of the most popular RPCA
methods, principal component pursuit (PCP, Candès
et al. (2011)), splits a data matrix into a low-rank
component and a sparse component. It has been used
for background modeling or foreground detection for
surveillance videos (Bouwmans and Zahzah (2014)).
In the field of medical image analysis, it found ap-
plications in reconstruction (Otazo et al. (2015)) and
motion correction (Hamy et al. (2014)) in dynamic
MRI. On the topic of layer separation for X-ray im-
ages, Ma et al. (2015) have used morphological clos-
ing to remove breathing structures from the images
and adopted RPCA to separate a quasi-static layer
and a vessel layer from XA. This method could only
be used in a retrospective setting, since it requires
all frames of a sequence. Volpi et al. (2015) have
developed a method that worked in a prospective set-
ting. The method used vesselness filtering (Frangi
et al. (1998)) and RPCA to separate a foreground that
contains interventional devices. They have imple-
mented the foreground separation by solving RPCA
with a mini-batch of data: for each new coming mini-
batch, the average of the low-rank component was
estimated and used as the background for the next
mini-batch. The limitation of this method is that
the foreground separation of a mini-batch is delayed
by the processing of the previous complete block of
data.

Online robust PCA (OR-PCA) is an online exten-
sion of the original RPCA method, proposed by Feng
et al. (2013). OR-PCA overcomes the limitation of
RPCA-based methods by reformulating the nuclear
norm in the RPCA formulation as an explicit low-

rank factorization, so that it does not require to “see”
the complete dataset or a mini-batch of data, but can
process each single data sample one at a time. This
setting enables online processing of streaming data.
In Song et al. (2015), a closed-form solution for the
subspace basis update in OR-PCA has been proposed
and shown to achieve better performance in image
alignment tasks. OR-PCA has been used in com-
puter vision tasks, such as background subtraction
(Javed et al. (2015)) and foreground detection (Javed
et al. (2014)), but its application in the field of medi-
cal imaging has not been investigated yet.

1.3. Overview and contributions

In this work we extended the method in Ma et al.
(2015) that only worked in a retrospective or “off-
line” setting. To this end, we developed and eval-
uated an automatic motion-free online layer sepa-
ration method for X-ray angiograms. The method
robustly separates the layer that contains vessels
and catheter tip from a (quasi) static background,
while ignoring large-scale motion such as diaphragm
movement. Our contributions are:

(a) We integrated OR-PCA in the layer separation
scheme, enabling online layer separation for XA,
which is a key ingredient for its potential appli-
cation in a clinical workflow.

(b) Inspired by the work of Mairal et al. (2010),
we proposed and analyzed three ways to down-
weight past information that is able to improve
the layer separation performance using the orig-
inal OR-PCA algorithm.

(c) We compared the proposed method with other
related background-removal approaches and
evaluated the results visually and quantitatively
on real patient XA data.

(d) We investigated the potential of improving the
contrast of vessels in a low-contrast scenario
using the proposed method with synthetic low-
contrast XA sequences and real sequences ac-
quired in a pig experiment in which various con-
trast levels were used.
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2. Method

2.1. Overview

The proposed method treats the intensity of an
XA frame as the sum of three layers, i.e., a “breath-
ing” layer, a quasi-static layer and a layer that con-
tains vessels. The method consists of two main
steps: first, large-scale breathing structures, e.g. di-
aphragm, are separated and removed from the orig-
inal XA frame, and second, smaller moving struc-
tures, e.g. vessels and guiding catheters, are sep-
arated from a quasi-static background using online
robust PCA (OR-PCA). Fig. 1 provides an overview
of the complete method, details are described in the
remainder of Section 2.

2.2. Separation of breathing structures

To prevent artefacts remaining in the vessel layer
due to respiratory motion, the layer that contains
large-scale breathing structures, such as diaphragm,
is removed from the original XA images in the first
step.

The layer of breathing structures was obtained
by removing “small” objects from the original X-
ray angiographic frame. Depending on the field of
view, those objects could include vessels, guiding
catheters, guide wires, stitches and vertebral bodies.
Following the approach of Ma et al. (2015), as a pre-
processing step, we applied a morphological closing
operation to the XA image with a circular structuring
element of 8.5 mm in diameter, in order to remove
any tubular and curvilinear structures smaller than
that size. An example of a resulting image is shown
in Figure 2b, where the guiding catheter and ves-
sels are removed and vertebral contours are blurred,
while structures that are susceptible to breathing mo-
tion remain in the image (diaphragm and lung tis-
sue are shown as the white area in the upper left part
of the image). The resulting image is referred to as
the “breathing layer” in this paper and was next sub-
tracted from the original image to obtain the differ-
ence image (DI, Figure 2c) of the XA frame for fur-
ther processing.

2.3. Separation of vessel layer via OR-PCA

In this section, we briefly review the formula-
tion of the online robust PCA method proposed by

Feng et al. (2013) and different subspace basis update
strategies for solving the OR-PCA problem (Feng
et al. (2013), Song et al. (2015)). Then we propose
three different ways of coping with previous frames
to improve on these methods.

2.3.1. Notation
Bold letters are used to denote vectors. With the

difference image (DI) of an XA frame represented
with a k × k matrix, we concatenated all pixels in
this matrix to form a single column vector z ∈ Rp,
where p = k2 is the dimension of the observed sam-
ple. Likewise, we use x ∈ Rp to denote the quasi-
static background of the XA frame and e ∈ Rp repre-
sents the foreground. Hence, z = x + e. Let n denote
the number of frames in a sequence, t be the index
of the sample/time instance of a frame and r denote
the intrinsic dimension of the subspace underlying
{xi | i = 1, 2, . . . n}.

Matrices are denoted by capital letters in the fol-
lowing sections. In particular, Z ∈ Rp×n is the ma-
trix of a complete sequence of difference images
(DIs), where its column zi represents the i-th DI.
Likewise, X and E are the background and the fore-
ground matrices with xi and ei the vector for the i-
th background and the i-th foreground. For an ar-
bitrary real matrix M, let ||M||1 =

∑
i, j |Mi, j| denote

the L1-norm of M, ||M||F denotes the Frobenius norm
||M||F =

√∑
i, j |Mi, j|

2, and ||M||∗ =
∑

i σi(M) de-
notes the nuclear norm, i.e., the sum of its singular
values. Tr(M) denotes the trace of a matrix.

2.3.2. Online robust PCA
Robust PCA (RPCA) aims at estimating the sub-

space underlying the observed samples. Among
many popular RPCA methods, Principal Component
Pursuit (PCP, Candès et al. (2011)) has been pro-
posed to solve the RPCA problem by approximating
the data matrix as the sum of a low-rank matrix and a
sparse matrix. The concepts of low-rank and sparsity
have been implemented using the nuclear norm and
the L1-norm of matrix respectively. This formula-
tion is suitable for the separation of the vessel layer
from the DI of an XA frame, since the background
has merely minor changes, which can be modeled as
a low-rank matrix. In addition, the fact that vessels
and guiding catheters take up only a small portion of
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Figure 1: The overview of online layer separation for an XA frame.

(a) (b) (c)

Figure 2: Morphological closing operation applied on an XA
frame: (a) original frame, (b) image processed with morpho-
logical closing, (c) difference image (DI) (a-b).

the complete image content fits the requirement of
sparsity.

2.3.2.1 The OR-PCA formulation

Different from the classical formulation in Candès
et al. (2011), PCP can be reformulated as follows
(Feng et al. (2013)):

min
X,E

1
2
||Z − X − E||2F + λ1||X||∗ + λ2||E||1 (1)

where λ1 and λ2 are regularization coefficients.
Through minimizing the cost function (1) that con-
tains the nuclear norm of the background X and the
L1-norm (sparsity) of the foreground E, the RPCA
algorithm aims at obtaining the background (X) and
foreground (E) that best approximate the XA se-
quence (Z). Because the nuclear norm couples
all samples tightly, typical methods to solve Equa-
tion (1), such as Augmented Lagrangian Multiplier

(ALM, Lin et al. (2011)), are often implemented in
a batch manner, which limits its application in sce-
narios that deal with streaming data, e.g. X-ray cine
angiography data during coronary interventions.

To overcome this problem, Feng et al. (2013) have
proposed to use an equivalent form of the nuclear
norm:

||X||∗ = inf
L,R

{
1
2
||L||2F +

1
2
||R||2F : X = LRT

}
(2)

where inf denotes the greatest lower bound of a sub-
set of a partially ordered set, L ∈ Rp×r is the basis of
the low-dimensional subspace and R ∈ Rn×r can be
seen as the samples’ coefficient with respect to the
basis. Substituting Equation (2) into (1), the RPCA
problem can be reformulated as (3):

min
L,R,E

1
2
||Z−LRT−E||2F +

λ1

2
(||L||2F +||R||2F)+λ2||E||1 (3)

Following Feng et al. (2013), solving Equation (3)
is equivalent to minimizing the following empirical
cost function given a sequence Z consisting of n sam-
ples [z1 . . . zn]:

fn(L) 4=
1
n

n∑
i=1

l(zi, L) +
λ1

2n
||L||2F (4)

where the loss function l(z, L) for each sample is de-
fined as:

l(z, L) 4= min
r,e

1
2
||zi − Lr − e||22 +

λ1

2
||r||22 + λ2||e||1 (5)
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Note that Equation (4) enables the possibility of
updating the basis L based on each individual sam-
ple. To handle streaming data in practice, in Feng
et al. (2013), the estimation of basis Lt is obtained
through minimizing the following surrogate function
of (4) with respect to L for the t-th time instance:

gt(L) 4=
1
t

t∑
i=1

(
1
2
||zi − Lri − ei||

2
2 +

λ1

2
||ri||

2
2

+ λ2||ei||1) +
λ1

2t
||L||2F (6)

Also observe that the loss function (5) optimizes r
(the coefficient of zi on the basis L) and e (the sparse
component of zi) to minimize the cost given a fixed
basis. Through an alternating optimization of r, e
and L, Equation (4) can be solved in an online man-
ner. The complete stochastic optimization scheme
for solving the OR-PCA problem is described in Al-
gorithm 1.

Note that the right-hand side of Equation (7) in
Algorithm 1 is equivalent to the loss function (5) for
the t-th sample. To solve it, Feng et al. (2013) gives
a closed-form solution to alternatively update r and
e until a convergence criterion is met. The update of
Lt in Equation (8) is discussed in the next section.

2.3.2.2 Update the subspace basis Lt

To minimize the function (6) with respect to L,
note that the term λ1

2 ||ri||
2
2 and λ2||ei||1 can be dis-

carded, we then derived the following expression for
Lt from (6):

Lt
4
= argmin

L

1
2

Tr[LT L
t∑

i=1

(rirT
i +

λ1

t
I)]

− Tr(LT
t∑

i=1

((zi − ei)rT
i )) (9)

Using the two intermediate variables At and Bt that
accumulate information of past frames, Equation (9)
is equivalent to (8) in Algorithm 1. Equation (8) is
then solved by the block-coordinate descent method,
i.e., each column of the basis L is updated sequen-
tially while fixing the other columns (see Algorithm
2).

Algorithm 1 Stochastic optimization for OR-PCA
(Feng et al. (2013))
Require: {z1, . . . , zT } (sequentially revealed data

samples), λ1, λ2 ∈ R (regularization parameters),
L0 ∈ Rp×r, r0 ∈ Rr, e0 ∈ Rp, A0 = 0r×r, B0 = 0p×r

(initial solution), T (number of samples).
1: for t = 1 to T do
2: Reveal the sample zt.
3: Given Lt−1, project the new sample:

{rt, et} = argmin
r,e

1
2
||zt − Lt−1r − e||22

+
λ1

2
||r||22 + λ2||e||1 (7)

4: At ← At−1 + rtrT
t , Bt ← Bt−1 + (zt − et)rT

t
5: Update the basis Lt

Lt
4
= argmin

L

1
2

Tr[LT L(At + λ1I)]

− Tr(LT Bt) (8)

6: end for
7: return XT = LT RT

T (the low-rank matrix), ET

(the sparse matrix).

Algorithm 2 The basis update using block-
coordinate descent (Feng et al. (2013))
Require: L = [l1, . . . , lr] ∈ Rp×r, A = [a1, . . . , ar] ∈

Rr×r, B = [b1, . . . ,br] ∈ Rp×r. Ã← A + λ1I.
1: for j = 1 to r do
2: Update the j-th column of L.

l j ←
1

Ã j, j
(b j − Lã j) + l j. (10)

3: end for
4: return L.
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Another way of solving Equation (8) is to derive a
closed-form solution. Let the derivative of the right-
hand side of (8) with respect to L be zero, we obtain

1
2

L(At + λ1I)T +
1
2

L(At + λ1I) − Bt = 0 (11)

where At = At−1+rtrT
t , Bt = Bt−1+(zt−et)rT

t . As (At+

λ1I) is symmetrical, a simple closed-form solution of
(8) can be derived as

Lt = Bt(At + λ1I)−1. (12)

This is equivalent to the form given in Song et al.
(2015).

2.3.3. Downweighting the past information
The previous solutions for the subspace basis up-

date treat all samples equally, which works well for
scenarios where samples are independently drawn.
For stream video data, however, adjacent frames
have higher correlation than “distant” frames. Thus,
it may be possible to improve the basis update by
treating past frames with different weights, giving
close-by frames higher impact to the result than the
distant frames. Inspired by the work of Mairal et al.
(2010) who has reported several possibilities to han-
dle past data in an online dictionary learning prob-
lem, we propose three approaches to downweight
past information for the OR-PCA algorithm. In Al-
gorithm 1, as At and Bt contain information of past
frames, variations can be made to replace the follow-
ing equation set on line 4 in Algorithm 1:

At ← At−1 + rtrT
t

Bt ← Bt−1 + (zt − et)rT
t

(13)

A logical choice is to apply an exponential decay
(ED) to “forget” past information as in (14):

At ← (1 − ε)At−1 + rtrT
t

Bt ← (1 − ε)Bt−1 + (zt − et)rT
t

(14)

where ε is the decay rate and 0 < ε < 1. So for the
t-th time instance, the weight for the i-th sample is
(1 − ε)t−i.

Similar to Mairal et al. (2010), as a second option
we consider supra-linear decay (SLD) approach:

At ←
(
1 − 1

t

)ρ
At−1 + rtrT

t

Bt ←
(
1 − 1

t

)ρ
Bt−1 + (zt − et)rT

t

(15)

where ρ is a tunable decay parameter and ρ > 0. At
the t-th time instance, the weight for the i-th sample
becomes

(
i
t

)ρ
. Note that: when ρ = 0, (15) turns into

(13); when ρ = 1, (15) degrades to a linear decay.
Apart from ED and SLD that scale the past data, it

is also an option to focus only on adjacent frames in
a fixed-size window, so that frames within the sliding
window are treated equally, whereas the frames out-
side the window from the earlier times are not con-
sidered for the basis update, as follows:



At ← rtrT
t

Bt ← (zt − et)rT
t

, t0 = 1

At ← At−1 + rtrT
t

Bt ← Bt−1 + (zt − et)rT
t

, t0 > 1 and t 6 t0

At ← At−1 + rtrT
t − rt−t0rT

t−t0

Bt ← Bt−1 + (zt − et)rT
t − (zt−t0 − et−t0)rT

t−t0

, else

(16)
where t0 is the window size (number of frames
within the window). This approach is referred to as
“sliding-window (SW)”.

2.4. Summary
The proposed online layer separation method con-

sists of the following steps, as shown in Figure 1.

(a) Breathing layer separation When a new XA
frame is obtained, the breathing layer is firstly
extracted by applying morphological closing on
that frame, as described in Section 2.2. Subse-
quently, the breathing layer is subtracted from
the original frame to obtain the DI.

(b) Quasi-static layer and vessel layer separation
Transform the DI from a matrix to vector by
concatenating each column of the matrix one af-
ter another. This vector is then separated into
two components by the OR-PCA method, as de-
scribed in Section 2.3. The sparse component is
reshaped to form the vessel layer, the other com-
ponent is constructed as the quasi-static layer.
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Finally, as pixels belonging to contrast agent al-
ways have negative value in the vessel layer, pixels
with positive value in the vessel layer are heuristi-
cally set to zero to suppress artefacts.

3. Experiments

3.1. Image data

In this work, we used three types of data for eval-
uation: clinical X-ray angiograms, synthetic low-
contrast XA and X-ray angiographic data of pigs
with variations in contrast concentration.

3.1.1. Clinical X-ray angiographic data
Imaging data from clinical routine that were

anonymized were used for our experiments. The
data were acquired under standard clinical proto-
col from the Department of Cardiology at Erasmus
MC in Rotterdam, the Netherlands. The 42 XA se-
quences are from 21 patients who underwent a PCI
procedure and were acquired with Siemens AXIOM-
Artis biplane system. The frame rate of all se-
quences is 15 frames per second (fps). The number
of frames per sequence varies from 46 to 244. All
42 XA sequences have in total 4886 frames. 22 se-
quences have 512 × 512 pixels, 12 have 600 × 600
pixels, 2 have 776 × 776 and 6 have 1024 × 1024.
Their corresponding pixel sizes are 0.216 × 0.216
or 0.279 × 0.279, 0.184 × 0.184, 0.184 × 0.184 and
0.139×0.139 mm2, respectively. In all sequences, in-
flow and wash-out of contrast agent can be observed.

3.1.2. Synthetic low-contrast XA
The synthetic image data was used to simulate the

condition that a reduced amount (50%) of contrast
agent is administered, for the purpose of testing our
online layer separation method on low-contrast XA.
To create these synthetic XA sequences from the real
ones, we used the off-line layer separation method in
Ma et al. (2015). The idea is that the real clinical
XA sequence was firstly separated into three layers.
The intensity of the vessel layer was then halved and
added back to the other two layers to generate a new
XA sequence that has half the amount of intensity
compared to the original one, as shown in Equation
(17):

(a) Clinical XA (b) Synthetic XA

Figure 3: An example frame of real clinical XA sequences and
synthetic low-contrast XA sequences: (a) the real image, (b) the
synthetic XA frame with 50% vessel contrast.

Isynthetic = α I∗vessel + I∗static + I∗breathing (17)

where Isynthetic denotes the synthetic XA sequence,
I∗vessel, I∗static and I∗breathing are the vessel layer, quasi-
static layer and breathing layer separated using the
method in Ma et al. (2015), respectively, and α =

0.5. The synthetic sequence has the same number of
frames, same image size and resolution as its orig-
inal in the clinical dataset. An example of a syn-
thetic low-contrast XA is shown in Figure 3b. Note
that the vessels have less contrast to the background
than the original image in Figure 3a. We created a
low-contrast XA sequence from each clinical XA de-
scribed in Section 3.1.1, which results in 42 synthetic
XA sequences in total.

3.1.3. X-ray angiograms of pigs
Additionally, in vivo XA data were acquired dur-

ing a pig experiment performed at the Erasmus MC
in Rotterdam, the Netherlands. 4 XA sequences
with different contrast concentration levels were ob-
tained from 1 FBM (familiar-hypercholesteremia
Bretonchelles Meishan) pig which underwent a
catheterization procedure after 14 months of high-
fat diet. The XA sequences were acquired using
a Siemens AXIOM-Artis monoplane system. The
frame rate of all sequences is 15 frames per second.
The number of frames per sequence varies from 48
to 79. The 4 XA sequences have in total 238 frames.
All sequences have 776 × 776 pixels corresponding
to a pixel size of 0.184 × 0.184 mm2. In all images,
the inflow of contrast agent can be observed. The
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XA images were made during a manual injection of
iso-osmolar X-ray contrast medium (Visipaque 320,
GE Healthcare, Buckinghamshire, U.K), delivered
through the guide catheter. The full-contrast images
were acquired with a contrast concentration of 320
g/mL. For the 25%, 50% and 75% contrast concen-
tration images, the contrast agent was diluted accord-
ingly with a 0,9% sodium-chloride solution (saline).
Prior to image acquisition, the guide catheter was
flushed with the right concentration of the contrast
agent.

In practice, the full-contrast sequence had lower
visual contrast than the images with 75% contrast.
This might be due to incomplete flushing of the guid-
ing catheter so that the contrast agent from the previ-
ous injection dilutes the current contrast agent.

3.2. Experiment 1: Parameter tuning for OR-PCA

OR-PCA has three parameters: the intrinsic rank
of the subspace basis r and the regularization param-
eters λ1 and λ2. In Feng et al. (2013) and Song et al.
(2015), both λ1 and λ2 were set to 1/

√
p, where p

is the dimension of data. This value had been pro-
posed by Candès et al. (2011) as a general rule of
thumb, but it can be slightly adjusted to achieve the
best possible result. Javed et al. (2014), for exam-
ple, have empirically selected different values for λ1

and λ2 instead of 1/
√

p. Unlike the rule for choosing
λ1 and λ2, the choice for r depends more on specific
applications.

In order to find the optimal parameter setting for
the layer separation application on the clinical XA
data, we used the following way to quantify the out-
come of layer separation with a certain set of param-
eters.

3.2.1. The definition of foreground and background
We firstly defined the “foreground” and the “back-

ground” for the objective of optimization in Section
3.2.2. It is worth noticing that the foreground and
the background here are merely defined for comput-
ing the vessel contrast and thus should not be con-
fused with the foreground and background’s defini-
tion coming from the layer separation scheme de-
scribed in the previous sections.

We used masks to define the foreground and back-
ground. A 1 mm wide area around manually-labeled

vessel centerlines was considered as the foreground
(shown as the dark area in the mask in Figure 4a).
This area falls entirely within the vessel, and thus is
a good representative of pixels belonging to vessels.
For background, we adopted two different masks for
measuring “global” and “local” contrast. The first
one highlights all pixels outside a 4 mm wide area
around the vessel centerlines (the white area in the
mask in Figure 4b). This mask can quantify the ef-
fect of the removal of diaphragm, guiding catheters,
etc. and can be used in a global measurement of con-
trast. The local background is defined as a 3 mm wide
neighborhood area around the dark area in the global
mask (the white area in the mask in Figure 4c).

For each clinical XA sequence, we randomly se-
lected 8-15 frames for mask generation and contrast
evaluation. The number of selected frames depends
on the sequence length. As the vessel contrast is of
main interest in this paper and in practice, only the
frames with contrast agent were selected. This way
we also avoided choosing non-contrast frames from
the beginning of a sequence where the online algo-
rithm has not converged yet. In total, 444 frames
were chosen from 42 sequences.

We also created the masks for the four pig XA
sequences. From each pig XA data, we randomly
chose 8-12 frames. In total, 38 frames were chosen
for the mask creation. These masks are only used for
evaluation of the contrast level in pig data, not for
parameter optimization.

3.2.2. The objective for parameter optimization
Metrics that have previously been used to mea-

sure vessel visibility include contrast-to-noise ratio
(CNR), as the work in Ma et al. (2015), and the
Jeffries-Matusita distance (JMD) (Zhu et al. (2009),
Zhang et al. (2009)). These metrics evaluate the
contrast of pixels from two groups, e.g. foreground
and background. However, when tuning parameters
of OR-PCA using either of these two measures as
the objective for optimization, the optimal parame-
ters are those that yield a very small standard de-
viation of the background, thus an almost constant
background, and a flawed separation of vessel layer
that loses much intensity of the vessel pixels. These
would result in a large CNR or JMD, but do not lead
to good foreground and background separation.
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(a) (b) (c)

Figure 4: Examples of masks that are used for defining fore-
ground and background in assessing the contrast of vessels. The
first row shows the masks, the second row exhibits the overlay
of masks on the corresponding original XA frame indicated by
colors. (a) the foreground (blue), (b) the global background
(red), (c) the local background (red).

To avoid the problem, the objective for OR-PCA
parameter optimization should also consider the in-
formation loss in the vessel layer in addition to the
vessel contrast. In this work, we integrated the dif-
ference between the original XA image and the sum
of its three layers separated by OR-PCA method in
the objective, such that losing too much information
in the vessel layer would result in a large difference
between the original XA and the sum of layer im-
ages. With this consideration, we used a corrected
CNR (cCNR) as the objective to optimize the OR-
PCA parameters:

cCNR =
|µF − µB|√
σ2

B + MSEV
(18)

where µF and µB are the mean of the pixel intensity
value in the foreground and the background that were
defined in Section 3.2.1, σB is the standard deviation
of the pixel intensity in the background. MSEV , the
mean square error in the vessel area, which serves as
a penalty term in Equation (18) to prevent too much
information loss in the vessel layer, is defined as fol-
lows:

MSEV =

∑
x,y(IV

original(x, y) − IV
3−layer(x, y))2

|IV
original|

(19)

where IV
(?) denotes the operation that takes only pix-

els in the vessel area (defined by the dark region in
the mask in Figure 4b) into consideration for image
I(?). The reason to focus only on the vessel area is
that the information loss of vessel pixels only occurs
in this region. Ioriginal(x, y) and I3−layer(x, y) are the
pixel values of the position (x, y) in the original XA
and the 3-layer sum image:

I3−layer = Ivessel + Istatic + Ibreathing (20)

where Ivessel, Istatic and Ibreathing are the vessel layer,
quasi-static layer and breathing layer, respectively.
|IV

original| denotes the number of pixels in the vessel
area in the frame.

According to (19), MSEV indicates how well the
original image can be reconstructed from the layer
separation result. An undesirable reconstruction with
pixel intensity loss in the vessel layer would result in
a large MSEV and, further, a small cCNR.

The cCNR for a complete sequence is defined as
the average cCNR over all selected XA frames from
the sequence. Global and local cCNR are computed
respectively using the masks in Figure 4b and 4c.

3.2.3. Parameter optimization

The parameters of OR-PCA for both subspace ba-
sis update methods were optimized by exhaustively
searching the optimal parameter set that maximizes
the previously defined objective cCNR within a dis-
crete set of parameters. First, cCNR was computed
for every possible parameter combination (λ1, λ2, r)
within the parameter range for each clinical XA se-
quence. Then, the optimal parameters were obtained
by searching for the parameter set that maximizes the
average local cCNR over the 42 XA sequences. This
optimization was performed for the two different ba-
sis update methods in Section 2.3.2.2 respectively.

The range for the intrinsic rank r was chosen as
the integers in [2, 20]. The regularization parameter
λ1 and λ2 were set to the same value as in Feng et al.
(2013) and Song et al. (2015) both set λ1,2 to 1/

√
p.

To search for the optimal λ1,2, we explored the values
in [0.1/

√
p, 10/

√
p] with a search step 0.1/

√
p.
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3.3. Experiment 2: Downweighting the past data in
OR-PCA, Influence of the parameters

Once the optimal parameter settings of OR-PCA
had been obtained from the previous experiment, we
used this setting and study the influence of history
parameters that were introduced in Section 2.3.3 for
downweighting the past data on the performance of
OR-PCA. The search spaces for exponential decay
(ED), supra-linear decay (SLD) and sliding-window
(SW) are:

ε ∈ {0.01, 0.3, 0.6, 0.9, 0.99, 0.9968, 0.999, 0.9997,
1− 10−4, 1− 10−5, 1− 10−6, 1− 10−7},

ρ ∈ {0.5, 1, 1.5, 2, 2.5, 3, 6, 9, ..., 36, 39, 42},

t0 ∈ [1, 15] and t0 ∈ N.

In the experiments, we combined these three ap-
proaches with the two methods that update the sub-
space basis L that were mentioned in Section 2.3.2.2,
i.e., block-coordinate descent (BCD) and the closed-
form solution (CF). In this paper, for example, the
OR-PCA method using exponential decay to down-
weight past data and using closed-form solution to
update L is referred to as OR-PCA (ED+CF), or
(ED+CF) as a short form.

As the OR-PCA parameters λ1,2 and r tuned with
cCNR assure a reliable layer separation, and tuning
the parameters of ED, SLD and SW does not cre-
ate the previously-mentioned undesirable layer sep-
aration, therefore, we evaluated the results for this
experiment using the direct measure of vessel con-
trast in an image CNR, which were used in Ma et al.
(2015), with the same masks from Section 3.2.1. In
the evaluation, RPCA was used as a reference for
the comparison purpose. Its regularization parame-
ter λ had been optimized the same way as in Section
3.2.3 and was set to the optimal value 1.5/

√
p from

the search space [0.1/
√

p, 10/
√

p] with a search step
0.1/
√

p. The experiments were carried out with the
42 clinical XA sequences.

3.4. Experiment 3: Comparison with other methods
We compared the proposed approaches to several

other related methods that can be used for prospec-
tive or online layer separation. The off-line method

with the batch version of robust PCA in Ma et al.
(2015) was used as a “benchmark” to show how close
prospective or online methods can achieve to the per-
formance of the off-line layer separation. The same
way in Section 3.3, the regularization parameter λ of
RPCA was set to 1.5/

√
p to achieve optimal perfor-

mance. This method is referred to as RPCA. The
following methods were tested in the experiment.

(a) Median-subtraction In Baka et al. (2014), static
background has been suppressed by subtracting
the median of the first 10 frames from each frame
in the sequence. This method is referred to as
MS.

(b) Morphological-closing + median-subtraction
This advanced version of median subtraction
method removes the breathing layer via morpho-
logical closing and then subtracting the median
of the first 10 frames. This method is referred to
as MC+MS.

(c) Robust PCA with a sliding window As men-
tioned in Section 1.2, Volpi et al. (2015) and
Brosig et al. (2015) solved RPCA within a slid-
ing window that consists of a few frames to
enable prospective foreground separation. We
adopted this idea of solving RPCA for our ex-
periment. Different from their methods using
Frangi filtering to preprocess images, to adapt to
our application, we applied morphological clos-
ing to remove the breathing layer and then sepa-
rate the other two layers from the difference im-
ages by solving RPCA with a sliding window.
We used two sets of parameters for this method.
The first one was used by Volpi et al. (2015) and
Brosig et al. (2015): the window size was set to
4 and the regularization parameter λ was set to
1.5/
√

p1. This one is referred to as RPCA (SW).
The second set of parameters was optimized the
same way as in Section 3.2.3. The window size
was set to 7 from the search space [2, 10] and
the regularization parameter λ was set to 0.5/

√
p

from the search space [0.1/
√

p, 10/
√

p] with a
search step 0.1/

√
p. This one is referred to as

RPCA (SW)*.

1λ was fixed to 3×10−3 in their papers. To adapt to different
image sizes, we set λ to 1.5/

√
p. This value is equivalent to

3 × 10−3 for images of size 512 × 512.
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These methods were compared with the OR-PCA
approaches using CNR as the evaluation metric with
the same masks from Section 3.2.1. The CNR of
OR-PCA approaches were computed in a leave-one-
out (LOO) manner. In each LOO loop, firstly, the
OR-PCA parameters λ1,2 and r were optimized on
the training sequences using the method in Section
3.2. Next, using the trained OR-PCA parameters,
the history parameters were trained on the same set
of sequences with local CNR using the approach in
Section 3.3. Lastly, the optimal parameters obtained
from the previous two steps were applied to com-
pute CNR for the left-out data. The overall CNR was
then computed as the average CNR over all LOO ses-
sions. The LOO experiment was carried out with the
42 clinical XA sequences.

In addition to CNR as an evaluation metric of ves-
sel contrast, to gain insight into how accurate the lay-
ers obtained with each method can reconstruct the
original XA image, the reconstruction error was eval-
uated. It was computed as follows:

Erecon =

∑
x,y |Ioriginal(x, y) − I3−layer(x, y)|∑

x,y Ioriginal(x, y)
(21)

where Erecon denotes the reconstruction error, Ioriginal

and I3−layer are defined in the same way as Equation
(19). The layer separation parameters used for com-
puting Erecon were the same that were obtained dur-
ing each LOO loop in the last paragraph. For each
clinical XA sequence, the reconstruction error was
computed for the frames that had been selected for
mask generation in Section 3.2.1. The average error
over all selected frames from a sequence was used as
the empirical reconstruction error for this sequence.
This error indicates the relative absolute difference
between the pixel intensity of the reconstruction im-
age and that of the original image with respect to the
pixel intensity of the original image.

3.5. Experiment 4: Vessel enhancement in low-
contrast XA

One possible application of layer separation is ves-
sel enhancement. This can be achieved through en-
hancing the vessel layer and adding it back to the
original image. To demonstrate this concept, we

conducted experiments to enhance vessels in low-
contrast XA using the online layer separation ap-
proaches.

The data we used are synthetic human XA data
and real XA data acquired from pigs, as introduced in
Section 3.1.2 and 3.1.3. We first separated the three
layers, then enhanced the vessel layer by multiply-
ing it by an enhancement factor β > 0. Finally, the
vessel-enhanced image Ienhanced equals the enhanced
vessel layer plus the original XA image, as shown in
Equation (22):

Ienhanced = β Ivessel + Ioriginal (22)

The results were evaluated using CNR. The layer
separation method we used in this Section is OR-
PCA (SW+CF).

For synthetic XA data, we used the parameters ob-
tained from the leave-one-out evaluation in Section
3.4 for each synthetic data. For the pig XA data, the
parameter set (λ1,2, r, t0) = (2.1, 5, 3) was used.

3.6. Implementation

All algorithms were implemented in MATLAB
(The MathWorks, Inc.). In particular, the computa-
tion time of layer separation was recorded in MAT-
LAB 2014a on an Intel Core i7-4800MQ 2.70 GHz
computer with 16 GB RAM running Windows 7.

4. Results

4.1. Optimal parameters for OR-PCA

The parameters of OR-PCA optimized over the
whole XA dataset for the two different basis update
methods are shown in Table 1. Here both λ1 and λ2

are set to the same value. Comparing the two meth-
ods, the λ1,2 have similar values, while the intrinsic
ranks r of the subspace are very different.

Table 1: The optimal parameter settings of OR-PCA for differ-
ent subspace basis update methods. p is the dimension of the
data, i.e. the number of pixels in a frame.

Basis Update Method λ1,2 r

Block-coordinate Descent (BCD) 2.3/
√

p 14
Closed-form Solution (CF) 2.1/

√
p 5
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Using block-coordinate descent with the optimal
parameter setting, an example of online layer sepa-
ration of an XA sequence (512 × 512, 55 frames) is
shown in Fig. 5. Note that the layer separation re-
sult for the first frame shows strong artefacts (e.g.
the vertebral shape in the vessel layer) due to ran-
dom initialization of the subspace basis. As time
proceeds, the layer separation improves quickly. The
10th frame already has a good layer separation.

4.2. Influence of the history parameters

With the optimal parameter setting of OR-PCA,
we quantitatively assessed how the history parame-
ters mentioned in Section 2.3.3 and 3.3 influence the
layer separation performance. Depending on the im-
age content, the influence of the history parameters
on each individual sequence may vary from sequence
to sequence (see Figure 1, Figure 2 and Figure 3
in Supplementary Material). The average measures
over the whole dataset are shown in Figure 6 where
the CNR values are normalized by dividing CNR by
the CNR value obtained from the RPCA method (so
RPCA has a constant value 1).

Compared to the original OR-PCA method (OR-
PCA (BCD)) and OR-PCA (CF), the history param-
eters ε, ρ and t0 all resulted in overall higher average
local and global CNR. This improvement was more
prominent in the case of global CNR compared to
local CNR. It is also worth noticing that the combi-
nation of the history parameters with the CF method
generally performed better than the (history param-
eter + BCD) option, which could be especially seen
in the sliding-window case.

In addition to the overall comparisons of the three
approaches, each of them presented a certain trend
of CNR as the history parameter changed. For ex-
ponential decay (Figure 6a and 6b), as −log(1 − ε)
increases, the CNR values firstly increased fast; once
they reached an optimal value when −log(1−ε) is be-
tween 0.5 and 2.5 (except for OR-PCA (ED+CF)),
the CNRs dropped down slowly to reach a con-
stant. In the case of supra-linear decay (Figure 6c
and 6d), the CNRs increased as ρ increases, but did
not change much when ρ is larger than 15. For
the sliding-window approach (Figure 6e and 6f),
although in general the CNRs dropped when the
window size becomes larger, OR-PCA (SW+BCD)

reached its optimum when t0 equals 2, whereas OR-
PCA (SW+CF) had an optimal t0 between 3 and 5.
Finally, as −log(1−ε) and ρ kept increasing (decreas-
ing the weights of all past frames), the CNR curves
of ED or SLD converged to where the CNR curves
of SW started (only preserve information of the new
frame).

4.3. Comparison with other methods

The optimal parameter sets for the methods based
on OR-PCA that were obtained during the leave-one-
out evaluation are listed in Table 2. In general, the
methods that use closed-form solution (CF) had a
smaller r than methods with BCD, but needed more
information from the past data (lower ε and ρ, higher
t0) to achieve the best performance.

Table 2 also shows the counts of the optimal pa-
rameter sets that each LOO session generated for
each method. For methods without history param-
eters (BCD and CF), the optimal parameter set with
the largest count were identical to the results in Sec-
tion 4.1. Most of the methods with a history parame-
ter had a dominant optimal parameter set from LOO,
except for the method (SW+CF) where the two most
dominant optimal parameter sets had almost equal
counts.

Table 3 lists the average CNR values for the orig-
inal XA sequences and the vessel layers obtained
with each method. Compared to the original XA, all
methods achieved a substantial improvement on the
CNR values in the vessel layer. Compared to method
MS, MC+MS, RPCA (SW) and RPCA (SW)*, the
methods that use OR-PCA (from BCD to SW+CF in
Table 3) had higher CNR. The CNR values of the two
types of methods (using or not using OR-PCA) were
statistically significantly different with the two-sided
Wilcoxon signed-rank test (see Table 1 in Supple-
mentary Materials). The methods that downweight
the past data (from ED+BCD to SW+CF) were able
to improve the vessel contrast over the methods with-
out history parameters (BCD and CF). The improve-
ment was statistically significant (see Table 2 in
Supplementary Materials). Among all the methods
that are based on OR-PCA, ED+CF, SLD+CF and
SW+CF showed similar or better average local CNR
than RPCA, although without statistical significance.
The performance of all OR-PCA based methods was
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Original XA

Breathing layer

Quasi-static layer

Vessel layer

Figure 5: An example of online layer separation of an XA sequence using OR-PCA with the optimal parameter settings as listed
in Table 1. The subspace basis update method used here is block-coordinate descent (BCD). Row 1-4 show the original frames,
the breathing layer, the quasi-static layer and the vessel layer, respectively. Column 1-6 are 6 frames taken from the sequence in a
chronological order and their layer separation outcomes. The frame ordinals from left to right are 1st, 5th, 10th, 15th, 20th, 25th.

closer to the off-line benchmark RPCA than those
not using OR-PCA.

Table 3 also shows the average reconstruction er-
ror between the original image and the three-layer
sum image for each method. For MS, MC+MS
and the RPCA (SW) methods, the foreground (ves-
sel layer) were obtained via subtraction of the back-
ground. therefore these methods, by definition, have
a reconstruction error of zero. The methods based
on OR-PCA made minor reconstruction errors (less
than 3% of the average pixel intensity of the original
images). The history downweighting techniques re-
duced the reconstruction errors of BCD and CF for

about 17% and 26% respectively. These errors are
about three times larger than the one made by RPCA.

The comparison between different methods is il-
lustrated in Figure 7, where the CNR values were
normalized in the same way as in Figure 6. Sim-
ilarly, the methods that use OR-PCA outperformed
the other methods on both local and global CNR. The
improvement that results from downweighting his-
tory was more substantial in global CNR than local
CNR. For the methods that are based on OR-PCA,
those that use the closed-form solution achieved
slightly better normalized CNR values than the ones
with BCD.
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Figure 8 presents examples of results of five
representative prospective or online layer separa-
tion methods and original images on four XA se-
quences: MC+MS, RPCA (SW), OR-PCA (CF),
OR-PCA (SW+CF) and RPCA. All methods im-
proved the visibility of vessels in the image, but
MC+MS generated strong artefacts near the guid-
ing catheters. RPCA (SW) shows slightly better
results than MC+MS, but still presents some mo-
tion artefacts near the guiding catheters. OR-PCA
(CF) achieved good layer separation, while OR-PCA
(SW+CF) was able to produce “cleaner” background
(row 1 column 4 and 5, the left part of the images)
and still maintained the vessel information (column
4 and 5). The vessel layer separated using OR-PCA
(SW+CF) had more similar appearances to the ones
produced by RPCA (column 5 and 6) than other
methods.

4.4. Vessel enhancement in low-contrast XA

The results of vessel-enhancement on synthetic
low-contrast XA and real pig XA data are shown in
this section.

4.4.1. Synthetic low-contrast XA
Table 4 shows the average CNR values for ves-

sel enhancement in synthetic XA sequences. With
enhancement factor β = 1, the vessel-enhanced XA
showed better local and global CNR than the syn-
thetic XA with statistical significance. Compared to
the original XA in Table 3, the CNR values of the
vessel-enhanced XA was slightly lower, but these
CNR values could be improved with a larger en-
hancement factor β.

A few examples of vessel-enhancement on syn-
thetic XA data are shown in Figure 9. Compared
to the original images (the first row), the synthetic
XA (the second row) had poorer vessel contrast. The
proposed layer separation method (SW+CF) was still
able to extracted the vessel layer (the third row),
while maintaining a majority of the information, and
enhance the vessel contrast (the last row) to the visu-
ally similar level of the original images.

4.4.2. Real XA of pigs
We show the CNR values for vessel enhancement

experiment with pig XA data in Table 5. In the table,

since the full-contrast sequence showed lower visual
contrast (see Section 3.1.3), the four sequences were
sorted by their local CNR values in an ascending or-
der. With enhancement factor β = 2, the vessel lay-
ers and the enhanced sequences showed an improve-
ment on local and global CNR. This improvement
increased as the local CNR of the sequence became
higher.

Similar observation could be found in Figure 10,
where representative frames from each pig XA se-
quence are shown. For example, the proposed
method was able to increase the vessel contrast in
the image of 25% contrast to the similar level as in
the image of 50% contrast (see Figure 10i and 10b).
The vessel contrast in the enhanced image of 50%
contrast (Figure 10j) had better contrast than the im-
age of full contrast (Figure 10c) and 75% contrast
(Figure 10d). It is also observed that, in Figure 10
from left to right, the false positive enhancement of
non-vessel structures (e.g. the dark spots in the right
part of the images) decreased as the visual contrast
increased.

4.5. Computation time

The computation time of layer separation for each
frame is shown in Figure 11. In this figure, the box
plots of per-frame processing time for each method
that is based on OR-PCA is illustrated. The process-
ing times of these methods ranged from 0.15 to 1.60
seconds per frame. The methods that use a closed-
form solution to update L were approximately two
times faster than the ones that use block-coordinate
descent. The methods which use ED and SLD to
treat past information were slightly faster than their
counterparts that do not weight past data, while the
methods with SW needed slightly longer time to pro-
cess one frame than their corresponding methods
BCD and CF. The “outliers” shown as red marks in
Figure 11 are from images of larger size.

The average computation time per image size is
shown in Table 6. Generally, the table shows that
images of larger size needed longer processing time
per frame. On XA images of common size in clinics
(512 × 512, 600 × 600 and 776 × 776), it is possible
to achieve a processing rate of 3-6 frames per second
(fps) with the proposed methods on our hardware.
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Compared to MS and MC+MS, OR-PCA based
methods showed much better layer separation perfor-
mance (see Table 3 and Figure 7), while the process-
ing time of the fastest one (ED+CF) is only about
40% slower than MC+MS.

The processing time for RPCA (SW) is also shown
in Table 6. In RPCA (SW), the foreground separation
of a frame is delayed by the processing of its previous
data block, therefore, we computed the average per
frame processing time of all blocks in a sequence.
Compared to RPCA (SW), the methods that use OR-
PCA perform faster with a factor up to 3.

5. Discussion and conclusion

We have presented a fast automatic online method
to robustly separate cardiac interventional X-ray an-
giograms into three image layers: a breathing layer, a
quasi-static layer and finally a vessel layer that con-
tains information of moving thin structures, such as
coronary arteries. The method relied on morpholog-
ical closing and online robust PCA and we investi-
gated different possibilities for downweighting infor-
mation from previous frames for further improving
layer separation. The parameters of OR-PCA were
optimized on 42 clinical XA sequences. In addi-
tion, a pilot study was performed on synthetic XA
sequences and pig data to show the potential of the
proposed method for vessel enhancement in XA.

The integration of OR-PCA algorithm into layer
separation enables online processing XA images
from the beginning of the sequence. The mecha-
nism behind this is that OR-PCA only needs to be
“fed” one frame each time, but is able to update the
subspace basis of the low-rank component based on
the new information. This is an important difference
from the method in Ma et al. (2015) which worked
“off-line” and needed the complete sequence as in-
put. The proposed approach is also different from the
method in Volpi et al. (2015), where the online im-
plementation needed several frames to solve RPCA
in a mini-batch manner, and hence, resulting in a de-
lay in processing for each following mini-batch. Al-
though the layer separation results of our proposed
method might suffer from random initialization at the
beginning, the algorithm converges fast and obtain
reasonable layer separation after a few frames (see

an example in Figure 5).
In addition to the advantage of online processing,

the methods that use OR-PCA show good perfor-
mance on layer separation. It significantly improves
the vessel visibility of the original XA images with
minor reconstruction errors: the background struc-
tures were removed and the vessel contrast was vi-
sually and quantitatively enhanced. Compared to
those methods that model a total static background,
e.g. MS and MC+MS, the approaches that are based
on OR-PCA are superior because they are able to
model a dynamic scene, therefore can adapt to small
dynamic changes in the background. The method
that separates layers by solving RPCA with a mini-
batch of data suffers from motion artefacts that re-
main around vessels and catheters. This might be
because it uses the frames in the previous block to
infer the background for the current block of images,
which might fall behind the background change. Fur-
thermore, it uses the same background for all im-
ages in the block to compute their vessel layers,
which ignores the possible small background change
within the block. OR-PCA updates L frame by frame
to keep up the background change and has a “cus-
tomized” background for each individual frame.

It is also worth noticing the advantage of remov-
ing breathing structures prior to the separation of the
other two layers with OR-PCA. If the original XA
image is directly “fed” to the OR-PCA method, the
breathing structures should stay in the same layer
with the static structures in order to obtain a rea-
sonable vessel layer, because OR-PCA decomposes
a source image into only two components. Due to
breathing motion, this background layer will con-
tain more variation than a layer that only contains
quasi-static structures, which might require a much
higher r parameter of OR-PCA to allow reasonable
convergence of the algorithm. However, it is often
inevitable to observe strong breathing motion arte-
facts in the output vessel layer. Figure 12 provides
an example that illustrates the cases without remov-
ing breathing structures prior to the OR-PCA compu-
tation. In Figure 12c, the image still contains a large
amount of noise and a static dark band on the left. In
Figure 12d, OR-PCA has a better convergence with
a higher r, less noise and no dark band is observed,
but a stronger artefact of diaphragm remains.
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The parameters of OR-PCA used in this work were
optimized based on our image data, instead of being
assigned the “rule of thumb” value 1/

√
p as in the

works of Song et al. (2015) and Javed et al. (2014).
The optimum of λ1,2 for method BCD and CF are
similar and the values are close to 1/

√
p. The optimal

intrinsic rank r for BCD and CF are different. A pos-
sible explanation is that CF computes the quasi-static
subspace basis L in one step, whereas BCD updates
L column-wisely and thus needs more variations to
achieve the same accuracy as CF.

The performance of layer separation using OR-
PCA can be improved by downweighting the past
frames. In this work, we have proposed three differ-
ent ways: exponential decay (ED) and supra-linear
decay (SLD) are methods to scale all past data, and
the sliding-window approach (SW) only preserve the
information of the few most recent frames, which
could be interpreted as “binary” scaling. The results
on vessel visibility and reconstruction error showed
that all three ways improve the overall layer separa-
tion by giving recent frames higher weight than ear-
lier frames. This suggest that not all past informa-
tion is necessary for best inferring the current status
in the scenario of online learning. A possible expla-
nation of this finding is that using the downweighting
techniques in the online learning algorithm promotes
faster convergence (Mairal et al. (2010)). Although
the improvement might vary between sequences, de-
pending on specific image content, most of them
present an improvement with history parameters (see
supplementary material).

The optimized history parameters show that only
the most recent 2-5 frames are needed to update the
subspace basis L, which seems too “few”. The rea-
sons might be two-fold. First, since L is the subspace
basis of the quasi-static layer which does not contain
much variation, it should not need information from
a large number of frames to update L. Second, for
the case of BCD, note that in Equation (10), the up-
date of L still partly relies on its previous version, not
solely on A and B. This means that every version of
L can inherit information from its previous version
and thus is a compact representation of all past in-
formation, but updating L needs only the very recent
frames.

The combination of the subspace basis update

methods and the past information downweighting
techniques yields 8 different OR-PCA variants, while
in practice one might choose one of them for a layer
separation task. In terms of the performance on im-
proving vessel visibility, (SW+CF) might be the best
choice, as it gives the highest CNR value. On the
other hand, if speed is of great concern, (ED+CF) is a
good option, since it runs the fastest among the eight
and the performance on CNR is not much worse
than (SW+CF). In addition, the implementation of
(ED+CF) is easier than (SW+CF), in that it does not
explicitly store a few past values of A and B, but does
the scaling implicitly.

In terms of computational efficiency, the methods
that use OR-PCA run fast. For 512×512 frames, OR-
PCA with CF was able to achieve a 5-6 fps process-
ing rate on standard PC; for 1024 × 1024 frames, the
proposed methods could reach at highest about 2 fps.
This is faster than RPCA (SW) based approaches ei-
ther from the result of our experiment (see Table 6)
or the literature, e.g. Volpi et al. (2015) who reported
about 1 fps for frame size in the range of 824 × 1024
to 1024×1024, and Brosig et al. (2015) who achieved
3 fps for 512 × 512 images. According to Feng et al.
(2013), the computation complexity for batch RPCA
is O(np2) and for OR-PCA is O(pr2). Since p � r
and normally also p � r2, OR-PCA runs much faster
than RPCA. We also notice that OR-PCA with CF
ran faster than BCD, this is because the computa-
tion complexity of both methods is O(pr2), and in
our experiments, the r for CF was smaller than the
r for BCD. The methods with history downweight-
ing schemes are faster than BCD and CF. This might
be due to the faster convergence of OR-PCA when
downweighting the past information. Finally, it is
worth noticing that the timing reported in this paper
were based on a MATLAB implementation that ran
on a single CPU core. A parallelized version of the
method may achieve real-time processing rate (about
15 fps) for clinical applications.

One of the potential direct clinical applications of
the proposed method is to enhance vessels in X-ray
images with low vessel contrast, which suffer from
poor diagnostic quality. X-ray contrast agent used
for angiography may have side effects including al-
lergic reaction which can be life-threatening, and
nephrotoxicity (contrast-induced nephropathy, CIN)
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which can result in chronic renal failure with all
its sequelae (Andreucci et al. (2014), Tepel et al.
(2006)). Thus, it is clinically relevant to limit the
use of X-ray contrast agent during interventions. The
method we proposed in this paper provides a possi-
bility to use X-ray contrast of lower concentrations.
In the experiments, we have evaluated whether it is
possible to achieve better vessel visibility on low-
contrast images by enhancing vessels using the meth-
ods based on OR-PCA. We have used synthetic 50%-
contrast XA images and 4 real pig XA sequences
with different contrast concentrations for the test.
The results showed a good improvement on the ves-
sel visibility on both kinds of images, implying a po-
tential application for coronary interventions.

The proposed layer separation methods are based
on some assumptions. First, the morphological clos-
ing operation with a circular structuring element of
8.5 mm in diameter worked well for small vessels,
such as coronary arteries. However, for other kinds
of interventions that operate on large vessels, such as
aorta or pulmonary arteries, the structuring element
of the proposed size is not large enough. In those
cases, one might consider using a larger structuring
element for morphological closing and adjusting the
parameters of OR-PCA for a reasonable layer sep-
aration. Another important assumption underlying
the methods that use OR-PCA is that there is dy-
namic change in the foreground, and it detects the
dynamic change. This assumption holds true most
of the time because coronary arteries always move
together with heartbeat. However, in the case that
the guiding catheter tip segment moves together with
heartbeat, the proposed layer separation method can-
not separate this moving catheter segment from ves-
sels. The method also requires a certain amount of
contrast agent, i.e. the signal of the vessels should
not be too weak. As the methods based on OR-PCA
assumes a sparse foreground, when the contrast of
vessel is not strong enough, the proposed methods
might enhance noise or detect other non-vessel struc-
tures in the foreground, as can be seen in Figure 10.

In the future, it is of great interest to investi-
gate the potential of the proposed method. One im-
portant direction would be to evaluate the clinical
potential, e.g. how the proposed layer separation
method would work under different contrast concen-

tration levels on a larger dataset. One could also
think of improving the visibility of instruments, such
as catheters or guidewires for other cardiac appli-
cations. From a methodological point of view, it
might be interesting to unify the steps in the proposed
method into one optimization problem, for example,
incorporating the heuristic post-processing into the
OR-PCA algorithm with an additional non-positive
constraint on the sparse component.

In conclusion, we have presented a fast automatic
online layer separation method for robust vessel en-
hancement in X-ray angiograms. The method sep-
arated an XA frame into three layers: a breathing
layer, a quasi-static layer and a vessel layer. We pro-
posed three ways to improve the layer separation out-
come by downweighting the past frames. The pro-
posed method significantly improved the vessel vis-
ibility and outperformed other related prospective or
online layer separation approaches. The method does
not need much computation time, making it poten-
tially applicable for clinical practice without the ne-
cessity of using advanced hardware, opening the way
for relevant clinical applications, such as improving
the vessel visibility under conditions of low contrast
concentrations, so as to allow a reduced amount of
contrast agent usage to prevent contrast-induced side
effects.
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Table 2: Counts of the optimal parameter sets obtained during
the leave-one-out evaluation for each OR-PCA method. As 42
sequences are used, that yields 42 leave-one-out sessions and
42 optimal parameter sets in total.

Method
λ1,2 r

History
Counts

(1/
√

p) Parameter

BCD
2.3 14 39
2.4 17 2
3.3 19 1

CF
2.1 5 31
2.3 7 11

ED+BCD
2.3 14 ε = 0.9 39
2.4 17 ε = 0.9 2
3.3 19 ε = 0.9 1

ED+CF
2.1 5 ε = 0.6 31
2.3 7 ε = 0.6 8
2.3 7 ε = 0.3 3

SLD+BCD
2.3 14 ρ = 42 39
2.4 17 ρ = 18 2
3.3 19 ρ = 9 1

SLD+CF
2.1 5 ρ = 36 29
2.3 7 ρ = 36 11
2.1 5 ρ = 15 2

SW+BCD

2.3 14 t0 = 2 38
2.4 17 t0 = 2 2
2.3 14 t0 = 1 1
3.3 19 t0 = 2 1

SW+CF
2.1 5 t0 = 3 17
2.1 5 t0 = 5 14
2.3 7 t0 = 5 11
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Table 3: The average local CNR, global CNR and reconstruction error Erecon (mean value ± standard deviation) for the original XA
and all methods.

Method Local CNR Global CNR Erecon

Original XA 0.991 ± 0.330 0.507 ± 0.305

MS 1.811 ± 0.490 2.211 ± 0.648 0
MC+MS 2.396 ± 0.635 3.210 ± 0.869 0

RPCA (SW) 2.134 ± 0.511 2.278 ± 0.676 0
RPCA (SW)* 2.170 ± 0.578 1.881 ± 0.623 0

(BCD) 3.010 ± 1.065 3.453 ± 1.223 0.026 ± 0.005
(CF) 3.010 ± 1.088 3.509 ± 1.204 0.030 ± 0.007
(ED+BCD) 3.209 ± 1.192 4.257 ± 1.316 0.021 ± 0.006
(ED+CF) 3.226 ± 1.263 4.422 ± 1.466 0.023 ± 0.007
(SLD+BCD) 3.169 ± 1.172 4.085 ± 1.282 0.022 ± 0.006
(SLD+CF) 3.246 ± 1.224 4.500 ± 1.393 0.022 ± 0.006
(SW+BCD) 3.170 ± 1.161 4.150 ± 1.295 0.022 ± 0.006
(SW+CF) 3.281 ± 1.290 4.602 ± 1.465 0.022 ± 0.007

RPCA 3.227 ± 1.301 5.176 ± 2.004 0.007 ± 0.002

Table 4: The average local and global CNR (mean value ± stan-
dard deviation) for the synthetic XA data, the vessel layers sep-
arated from the synthetic data using OR-PCA (SW+CF), and
the vessel-enhanced XA sequences (β = 1). The two-sided
Wilcoxon sign-rank test indicates statistically significantly dif-
ference in local and global CNR between the synthetic data and
the vessel-enhanced images (p < 0.01).

Image types Local CNR Global CNR

Synthetic XA 0.592 ± 0.236 0.338 ± 0.245
Vessel Layer 3.170 ± 1.290 4.048 ± 1.592
Enhanced 0.875 ± 0.312 0.452 ± 0.285

21



Table 5: The local and global CNR of the 4 XA sequences obtained from pigs, the separated vessel layer and their vessel-enhanced
sequence (β = 2). The 4 sequences are sorted by their local CNR values in an ascending order.

Contrast Concentration 25% 50% 100% 75%

Metric (CNR) local global local global local global local global

Original 0.307 0.164 0.490 0.340 0.523 0.395 0.690 0.569
Vessel Layer 2.546 0.682 5.156 0.830 5.175 2.759 6.835 5.473
Enhanced 0.488 0.262 0.954 0.562 1.041 0.729 1.528 1.147

Table 6: The average processing time (seconds/frame) for each layer separation method on XA sequences of different frame size.
The bold numbers indicate processing time that the fastest OR-PCA based method needs for a certain frame size.

Method 512 × 512 600 × 600 776 × 776 1024 × 1024

BCD 0.36 0.51 0.69 1.14
CF 0.20 0.30 0.36 0.58
ED+BCD 0.30 0.41 0.63 1.02
ED+CF 0.16 0.21 0.34 0.57
SLD+BCD 0.30 0.42 0.63 1.02
SLD+CF 0.17 0.22 0.34 0.57
SW+BCD 0.36 0.50 0.75 1.27
SW+CF 0.22 0.31 0.46 0.77

RPCA (SW) 0.37 0.53 0.85 1.50
RPCA (SW)* 0.46 0.68 1.10 1.97

MS 0.02 0.03 0.05 0.11
MC+MS 0.11 0.15 0.25 0.45

22



0 1 2 3 4 5 6 7

0.94

0.96

0.98

1

1.02

1.04

−log(1−ε)

Lo
ca

l C
N

R

 

 

OR−PCA (ED+CF)
OR−PCA (ED+BCD)
OR−PCA (BCD)
OR−PCA (CF)
RPCA

(a) Exponential decay (local CNR)

0 1 2 3 4 5 6 7

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

−log(1−ε)

G
lo

ba
l C

N
R

 

 

OR−PCA (ED+CF)
OR−PCA (ED+BCD)
OR−PCA (BCD)
OR−PCA (CF)
RPCA

(b) Exponential decay (global CNR)

0 10 20 30 40

0.94

0.96

0.98

1

1.02

1.04

ρ

Lo
ca

l C
N

R

 

 

OR−PCA (SLD+CF)
OR−PCA (SLD+BCD)
OR−PCA (BCD)
OR−PCA (CF)
RPCA
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Figure 6: The influence of history parameters ε, ρ and the sliding-window size t0 on local and global CNR. All values are normalized
using RPCA method as the reference. In (a), (c) and (e), the local CNR for OR-PCA (BCD) and OR-PCA (CF) are very close that
the two lines almost overlap.
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Figure 7: The boxplot that compares various methods on their performance of layer separation. In these diagrams, the CNR values
of the mentioned methods are normalized by dividing their CNR by the CNR obtained with the RPCA method.
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Original XA MC+MS RPCA (SW) (CF) (SW+CF) RPCA

Figure 8: Comparison of five different layer separation methods on four example XA sequences. One representative frame is
selected from each sequence to visualize the results. Row 1-4 show four sequences. Column 1 is original XA, column 2-6 are the
separated foreground (vessel layer) obtained from MC+MS, RPCA (SW), OR-PCA (CF), OR-PCA (SW+CF) and RPCA.
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Original XA

Synthetic low-contrast XA

The vessel layer separated from the synthetic XA

The vessel-enhanced images (β = 1)

Figure 9: Five examples of vessel enhancement on synthetic low-contrast XA images (Column 1-5).
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Original pig XA

(a) Local CNR = 0.307 (b) Local CNR = 0.49 (c) Local CNR = 0.523 (d) Local CNR = 0.69

Vessel layer

(e) (f) (g) (h)

Vessel-enhanced images (β = 2)

(i) Local CNR = 0.488 (j) Local CNR = 0.954 (k) Local CNR = 1.041 (l) Local CNR = 1.528

Figure 10: Vessel enhancement on pig XA sequences with different level of contrast agent. From left to right, the contrast concen-
tration used for the sequence are 25%, 50%, 100% and 75%, respectively, while the local CNR increases. Row 1: the original pig
XA sequences. Row 2: the separated vessel layer. Row 3: the vessel-enhanced images (β = 2).
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Figure 11: The processing time that each method that uses OR-
PCA needs for layer separation. The per frame processing time
(second) of every single frame in the whole dataset is shown as
box plots.
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(a) (b) (c) (d)

Figure 12: An example that compares the cases without removing breathing layer before the OR-PCA operation to the one resulted
from the proposed method: (a) original image; (b) the vessel layer obtained with OR-PCA (BCD) using the proposed method and
parameters; (c) the vessel layer obtained without the separation of breathing layer using OR-PCA (BCD) with the same parameters
as the case in (b); (d) the vessel layer obtained without removing breathing structures using a higher r value (r = 50) for OR-PCA
(BCD). Strong artefacts due to breathing motion can be observed in (c) and (d).
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