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Abstract. Percutaneous coronary intervention is a treatment for coro-
nary artery disease, which is performed under image-guidance using X-
ray angiography. The intensities in an X-ray image are a superimposition
of 2D structures projected from 3D anatomical structures, which makes
robust information processing challenging. The purpose of this work is to
investigate to what extent vessel layer separation can be achieved with
deep learning, especially adversarial networks. To this end, we develop
and evaluate a deep learning based method for vessel layer separation.
In particular, the method utilizes a fully convolutional network (FCN),
which was trained by two different strategies: an L1 loss and a combi-
nation of L1 and adversarial losses. The experiment results show that
the FCN trained with both losses can well enhance vessel structures by
separating the vessel layer, while the L1 loss results in better contrast.
In contrast to traditional layer separation methods [1], both our meth-
ods can be executed much faster and thus have potential for real-time
applications.

1 Introduction

Percutaneous coronary intervention (PCI) is a minimally invasive procedure for
treating patients with coronary artery disease in clinical routine. These proce-
dures are performed under image-guidance using X-ray angiography, in which
coronary arteries are visualized with X-ray radio-opaque contrast agent. Such
imaging setups enable clinicians to observe coronary arteries and navigate med-
ical instruments during interventions.

An X-ray image is a superimposition of 2D structures projected from 3D
anatomical structures. The overlapping nature of structures in X-ray angiograms
(XA) makes robust information processing challenging. Layer separation was
proposed for separating 2D overlapping structures in XA and putting them in
different layers by exploiting temporal information. As a result, structures with
similar motion patterns or appearances are grouped together and ready for fur-
ther analysis without interference of structures in other layers [1].

In contrast to traditional methods [1], methods based on machine learning,
particularly deep learning, have been reported to gain excellent performance
in solving medical imaging problems [3], including layer separation in XA [4].
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In this scenario, layer separation is viewed as an image-to-image translation
problem, in which a mapping function is learned to translate an input (XA)
to an output (vessel layers). Performance of image-to-image translation may be
further boosted by generative adversarial networks (GANs, [6]). GANs consist of
two networks, a generator and a discriminator. The idea of adversarial training
has been applied and achieved good performance in solving medical imaging
problems [7]. Nevertheless, to what extent it can be used for layer separation for
vessel enhancement in XA has not been explored yet.

In this paper, we investigate and evaluate deep learning based layer sepa-
ration methods for vessel enhancement in XA, including trained by adversarial
networks (AN + L1 method) introduced in [10] and a conventional L1 loss (L1

method). In particular, the work focuses on transforming the XA directly to
the vessel layer where structures of interest (vessels, catheter tip, guidewire) are
enhanced, and background structures (bones, diaphragm, guiding catheter) are
removed. Our contributions are 1) proposing a GAN-based approach (AN +L1

method) for layer separation in XA; 2) comparing the proposed method with one
state-of-the-art approach [4]; 3) assessing the proposed methods for low-contrast
scenarios with synthetic XA data, which show robust performance.

2 Method

While the original GAN [6] generates new samples from random noise z, we
adopt the approach introduced in [10] that trains a generator to generate a new
image y from the input image x and a random noise z. Different from [10], our
approach does not include the random noise z in the generator input in which the
randomness is implicitly contained in the variety of the input images. Therefore,
we denote the generator G in our approach as a mapping G : x → y, where x
is an input XA and y represents the desired output vessel layer. The method
overview is illustrated in Fig. 1.

2.1 Training objective

The GAN objective of our approach can be described as Eq. 1,

LGAN (G,D) = Ex,y∼pdata(x,y)
[logD(x, y)]+Ex∼pdata(x)

[log(1−D(x,G(x)))] (1)

where G is the generator, D is the discriminator, x and y denote the input XA
and the reference vessel layer, respectively. Note that LGAN (G,D) is equivalent
to the binary cross-entropy loss of D for real (the first term) and fake (the second
term) image pairs.

Traing the generator can be also benefited from adding an additional term
for G to the GAN objective, e.g. the L1 ([10]) or L2 ([8]) distance, penalizing the
generator output being different from the reference. We choose the L1 distance
(see Eq. 2) for our approach, as it preserves finer details in the images than L2,
which is advantageous to small vessel enhancement.
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Fig. 1: Overview of our approach. The generator G learns a pixel-to-pixel trans-
formation that maps an input XA to a vessel layer where the vessel structure
is enhanced and the background structures are removed. The Discriminator D
receives the input XA and the vessel layer as an input pair. D is trained to dis-
tinguish whether the input pair is a real pair (input XA, reference vessel layer)
or a fake pair (input XA, generated vessel layer). During training, D provides
feedback for training G; G is trained to confuse D. Once training is done, only
G is used for inference to generate vessel layer from input XA.

LL1
(G) = Ex,y∼pdata(x,y)||y −G(x)||1 (2)

The total objective of our approach is expressed in Eq. 3, where λ is a weight
balancing the two terms.

min
G
max
D
LGAN (G,D) + λLL1

(G) (3)

2.2 Generator G

We used a U-Net-like architecture [5] for G, slightly modified from our previous
work [4]. First, batch normalization [9] was applied after all convolutional layers
except for the last output layer. Second, all ReLU activations were replaced by
leaky ReLU with a leak slope of 0.2. Third, all max pooling layers were replaced
by a stride-2 convolutional layer for spatial downsampling. The second and third
point are to avoid sparse gradient. In addition, tanh activation was used as the
final output of G. We also added three dropout layers in the decoding path [10]
to reduce overfitting. The generator architecture can be referred to Fig. 2.

As XA sequences are time series of images, temporal information between
frames is useful for distinguishing foreground and background structures. We
used as the input x for G not only the current frame, but also information of
a few frames before the current one, so that the output of G is conditioned on
multiple frames. In particular, we used the following as different input channels
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Fig. 2: Generator architecture. The left and right sides are an encoder and a
decoder, respectively. Each box denotes a feature map; the number on top of
each box indicates the number of feature maps; the number at the lower left
edge of each box is the size of corresponding feature maps; the orange boxes in
the decoder represent corresponding copied feature maps from the encoder.

of x: the current frame It; the difference between the current frame and its
preceding frame, dt−1 = It − It−1; and the difference between the current frame
and the first frame in the sequence, d1 = It − I1. The number of input channels
determines the dimension of convolution kernel in the first layer of G.

According to Eq. 2, training G (also D according to Eq. 1) requires a train-
ing reference y. To create the training reference, we used the layer separation
approach in [2] to generate the “ground truth” vessel layer. The pixel values of
the resulted vessel layer were then normalized to the range from -1 to 1 due to
the last activation layer of G (see Section 2.2).

2.3 Discriminator D

The discriminator D works as a classifier to distinguish as well as possible if its
input is from the same distribution of the reference data or the generated data.
The network architecture of D consists of five 3×3 convolutional layers of stride-
2, following by a fully-connected layer and a softmax layer. Batch normalization
and leaky ReLU with a leak slope of 0.2 were used after each convolutional layer.

3 Experiment and Result

3.1 Data

42 XA sequences were acquired with Siemens AXIOM-Artis biplane system from
21 patients undergoing a PCI procedure in the Erasmus MC, Rotterdam. The
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frame rate is 15 fps. The sequences contain 4884 frames in total. After removing
the first frame of each sequence to generate dt−1 and d1, we selected 8 sequences
(940 frames) as test data and the other 34 sequences were divided into five sets
with nearly the same frame numbers for cross-validation.

Two preprocessing steps were applied on the clinical data prior to processing
them with the neural networks: 1) all images were resampled to the grid of
512×512 so that input images to the neural networks are of the same dimension;
2) the pixel values of all images were normalized to the range from -1 to 1.

3.2 Evaluation metrics

After normalizing the range of references and predictions from 0 to 1, we eval-
uate the quality of the vessel layer images using contrast-to-noise ratio (CNR).
As CNR is a metric based on only the output of G, we additionally used struc-
ture similarity (SSIM), following the settings from [11] to measure the similarity
between the generator output and the reference. The CNR and SSIM were com-
puted in both local and global scale using the mask images defined in [1]. For
each XA sequence, we randomly selected 8-15 frames with contrast agent for
contrast evaluation. The number of selected frames depends on the sequence
length. In total, 444 frames were selected from 42 sequences.

3.3 Implementation

All the networks were trained and evaluated on SURFsara with an NVIDIA
Tesla K40m GPU using Keras with Tensorflow as the backend. The parameters
of all the networks were trained using an ADAM optimizer [12].

3.4 Experiment 1: Evaluation on clinical XA

We compared the performance of training the generator with L1 only (Eq. 2) and
the combination of L1 and adversarial loss (Eq. 3). In addition, we also evaluated
the influences of input channels, 1-Channel (1Ch, (It)), 2-Channel (2Ch, (It, d1))
and 3-Channel (3Ch, (It, dt−1, d1)), respectively.

After tuning both the L1 method and AN+L1 method, they were compared
with the method presented in [4] using average CNR and SSIM of 42 frames
from 4 sequence. The optimal hyper-parameters obtained from cross-validation
for both AN + L1 and L1 methods are (input = 2Ch, learning rate for G =
5 × 10−4 , learning rate for D = 5 × 10−4 , epoch number = 50, λ = 10) and
(input = 2Ch, learning rate for G = 5×10−4 , epoch number = 50), respectively.

Average CNR and SSIM of both our proposed methods and the method
proposed in [4] based on the test data of clinical XA are shown in Fig. 3. Fig.
5 illustrates two prediction examples of these methods. As shown in Fig. 3,
all the three methods achieve nearly the same local CNR that is also similar
to the reference. Fig. 5 shows that vessel area of the AN + L1 method is the
brightest; in terms of the background, both AN + L1 and L1 methods obtain
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clearer background than the other method that did not remove the catheter and
some tubular structures well.

We used a two-sided Wilcoxon signed-rank test to assess whether the results
are statistically significantly different. AN + L1 method is statistically different
from L1 method; AN + L1 method and the method proposed in [4] are also
statistically different except for local CNR; differences between L1 method and
the method proposed in [4] are only statistically significant for SSIM.
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Fig. 3: Average CNR and SSIM of various methods based on clinical XA.
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Fig. 4: Average CNR and SSIM of various methods based on low-contrast XA.

3.5 Experiment 2: Evaluation on synthetic low-contrast XA

According to [1], layer separation has the potential to enhance vessels in XA
with low vessel contrast, which may be caused by obese patients or reduction
of contrast agent concentration for contrast agent allergic patients. To this end,
we also evaluated our proposed method on low-contrast XA synthesized from
the clinical XA, with the same references as those in Exp. 1. We also examined
the influences of the input channels and compared to the method presented
in [4]. The synthetic images simulate a 50% lower contrast concentration and
were constructed using an offline robust principal component analysis (RPCA)
approach [1].

The optimal hyper-parameters for both AN + L1 and L1 methods based on
low-contrast XA are the same as those of the clinical XA. Average CNR and
SSIM of our proposed methods and the method presented in [4] based on the
test data of low contrast XA are shown in Fig. 4. Fig. 6 illustrates two prediction
examples of these methods. As illustrated in Fig. 4, all the three methods achieve
nearly the same local CNR that is also similar to the reference.
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Fig. 5: Two prediction examples of various methods based on clinical XA.
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Fig. 6: Two prediction examples of various methods based on low-contrast XA.

4 Discussion

In summary, the performance of AN + L1 method is slightly worse than that
of the L1 method based on the test data of both clinical XA and low-contrast
XA. This may be because AN + L1 method updates the network parameters
of G from two parts of losses (L1 loss and adversarial loss) parallelly, in which
the L1 loss makes the output of G similar to the reference pixel-wise, but the
adversarial loss forces the output of G similar to the reference globally. In ad-
dition, two optimizers were utilized to update the network parameters of G in
AN + L1 method, which can be regarded as adjusting the network parameters
already optimized with L1 loss by optimizing the adversarial loss, so the output
of AN + L1 method may be slightly different from that of L1 method.

In addition, the catheter and other tubular structures can not be completely
removed in the global background of the state-of-the-art method, which mainly
increases the global σB , and decreases the global CNR. In Fig. 5 and 6, the
vessel area of both the L1 method and the method proposed in [4] are nearly
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the same except for some small vessels and cross points between the vessel and
the catheter, resulting in slightly lower local SSIM. Similarly, because of the
presence of the catheter and other tubular structures, the global SSIM is also
slightly smaller.

In terms of the processing speed, both L1 method and AN + L1 method
achieve a rate of about 18 fps using a modern GPU, which is faster than the
common image acquisition rate in clinics (15 fps). This result indicates the poten-
tial for a real-time clinical application. This is a major advantage over previous
methods that are based on offline and online RPCA: those methods, though fast,
are not sufficiently fast for real-time use.

In conclusion, we proposed deep learning based approaches for layer sepa-
ration in XA. Our experiments demonstrated that the U-net like arcihtecture
trained with L1 loss performs similar to previous approaches, and we also showed
that an additional discriminator network does not bring added value for this ap-
plication. The methods can run in real-time, and thus have potential for clinical
applications in interventions.
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