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Abstract. Automatic vessel extraction from X-ray angiograms (XA)
for percutaneous coronary interventions is often hampered by low con-
trast and presence of background structures, e.g. diaphragm, guiding
catheters, stitches. In this paper, we present a novel layer separation tech-
nique for vessel enhancement in XA to address this problem. The method
uses morphological filtering and Robust PCA to separate interventional
XA images into three layers, i.e. a large-scale breathing structure layer, a
quasi-static background layer and a layer containing the vessel structures
that could potentially improve the quality of vessel extraction from XA.
The method is evaluated on several clinical XA sequences. The result
shows that the proposed method significantly increases the visibility of
vessels in XA and outperforms other background-removal methods.

1 Introduction

Percutaneous coronary intervention (PCI) is a minimally invasive procedure for
treating patients with advanced coronary artery disease. It is usually performed
under guidance of X-ray angiograms (XA) where coronary arteries are opacified
with contrast agent. Automatic processing of XA images, e.g. vessel extraction
of coronary arteries, may serve as a basis for further processing, such as coronary
motion analysis [1] and pre/intra-operative information fusion [2].

Hessian-based vessel enhancement filtering, e.g. Frangi vesselness filter [3], is
commonly used for extraction of vessels in medical images. Applying such filters
directly on interventional XA, however, often also enhances non-vascular struc-
tures, such as catheter segments and vertebral contours, due to their tubular or
curvilinear structural appearances.

Related works have reported on methods to remove non-vessel structures or
improve the visibility of vessels in XA images. In [4], a method that subtracts the
median frame was used for removing static structures in XA, such as vertebral
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bodies. Schneider et al. [5] proposed a post-processing technique on vesselness
images that combines a local probability map with local directional vessel infor-
mation for artifact reduction and catheter removal. Layer separation methods
provide an alternative way of vessel enhancement. In [6], a multi-scale frame-
work was developed to separate XA images into three layers based on different
motion patterns such that coronary arteries are better visible in the fast motion
layer. This method involves human-interactions to label corresponding control
points in XA images for motion field estimation. In another study [7], a Bayesian
framework was developed that combines dense motion estimation, uncertainty
propagation and statistical fusion to achieve motion layer separation. Both layer
separation methods require to compute motion field. Robust principal compo-
nent analysis (Robust PCA) is a data decomposition technique that has e.g.
been used for background modeling from surveillance video in [8]. In [9], Robust
PCA was adopted for registration of DCE MR time series.

In this paper, we propose an automatic method to robustly separate fore-
ground (contrast-enhanced vessels, guiding catheter tip) from (quasi) static back-
ground, such as vertebral bodies and guiding catheters in the aorta, while ig-
noring large-scale motion such as diaphragm movement. Our contributions are
three folds: 1) the development of a Robust PCA based layer separation method
that does not require computation of the motion field; 2) qualitative and quanti-
tative evaluations on four clinical XA sequences; 3) comparison to other related
background-removal approaches.

2 Method

The method enhances vessels in XA images by separating an image into three
layers, i.e. a large-scale breathing layer, a quasi-static background layer and a
foreground layer containing the vessels. To this end, our proposed method con-
sists of two steps: first, separation and removal of large-scale breathing struc-
tures, such as diaphragm, from the original images, using morphological closing;
second, separation of a quasi-static background from the moving structures using
Robust PCA. In the remainder of this section, we describe both steps in more
details, followed by the integrated layer separation.

2.1 Separation of breathing structures

To obtain a separate layer containing large-scale structures, we remove small ob-
jects from the original image, including guiding catheters, guide wires, stitches
and vertebral bodies. Similar to the approach in [10], we apply morphological
closing to the image with a circular structuring element of 8.5 mm in diameter.
Pilot experiments indicated that this size was adequate for a complete removal
of vessels and guiding catheters from our images while not causing too much cir-
cular artifacts. An example of a resulting image is shown in Fig. 1(b). Compared
to the original image, the guiding catheter and coronary arteries are removed
and vertebral contours are blurred, while structures that presents respiratory
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motion, such as the diaphragm and lung tissue, remain in the image (white area
in the upper left part of the image). The resulting image that contains large
scale structures which exhibit respiratory motion is called the breathing layer,
and will later be subtracted from the original image to obtain the difference
image (DI, Fig. 1(c)) of an XA frame for further processing.

(a) (b) (c)

Fig. 1: Morphological closing operation on an XA image: (a) the original image,
(b) image processed with morphological closing, (c) the difference image (DI) of
(a) and (b).

2.2 Background separation using Robust PCA

Robust PCA decomposes a data matrix into two different sources: a low-rank
matrix and a sparse matrix. Suppose that M is an m × n matrix to be de-
composed, which contains n observations of m dimensional data in its columns.
Robust PCA is formulated as the following optimization problem [8]:

minimize ‖L‖∗ + λ‖S‖1
subject to L+ S = M

(1)

where L is a low-rank matrix and S is a sparse matrix of the same size as M .
‖L‖∗ denotes the nuclear norm of L and ‖S‖1 is the L1 norm of S. λ is the
tuning parameter of regularization. Source decomposition is achieved by solving
this optimization problem. In this work, we use inexact Augmented Lagrange
Multiplier (ALM) method [11] to solve the problem.1

Robust PCA can be applied for separation of the background layer of DI
from the vessel layer. The background of an XA sequence is an image series with
small changes of pixel intensity containing (quasi) static structures, while the
foreground, or the vessel layer, consists of moving objects. Thus, resizing the
background image into a column vector and combining all these vectors from a

1The implementation is available at http://perception.csl.illinois.edu/matrix-
rank/sample code.html
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background series together results in a low rank matrix. Likewise, the image se-
ries of vessel layer can be modeled as a sparse matrix, as either vessels or guiding
catheters take up only a small part of the whole image content. Therefore, the
background layer and vessel layer of DIs can be separated by solving the Robust
PCA problem.

2.3 Image processing pipeline of XA layer separation

The proposed layer separation algorithm consists of the following steps. All steps
are illustrated in Fig. 2.

1. Given an XA sequence, apply morphological closing on each frame of the se-
ries, as described in Section 2.1. For each frame, subtract the morphological-
closed image from the original image to obtain the DI.

2. Rearrange the DIs of the XA sequence to construct a matrix whose columns
represent the frames. This matrix is considered as the input matrix M in
Equation 1.

3. Solve the Robust PCA problem to obtain the background layer matrix L
and vessel layer matrix S. Resize L and S to get the background layer and
vessel layer of the previous size for each frame of the sequence.

Fig. 2: The pipeline of the proposed layer separation method.

3 Experiments

Fully anonymized imaging data were used in our experiments. Four XA image
series that were acquired with Siemens AXIOM-Artis biplane system were an-
alyzed. The frame rate of all sequences is 15 frames per second. The number
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of frames per series ranges from 55 to 169. From our data, the image matrix is
512 × 512 pixels for one of the series and 600 × 600 for the other three, with
resolution 0.216 × 0.216 and 0.184 × 0.184 mm2, respectively.

To quantify the visibility of vessels in an image, the contrast-to-noise ratio
(CNR) is used in the experiments. CNR is a measure of image quality based
on contrast. Once the background and foreground of an image is defined, the
definition of CNR can be formulated as:

CNR =
|µF − µB |

σB
(2)

where µF and µB are the mean of foreground and background pixel values re-
spectively, and σB is the standard deviation of the background pixel values.
This definition of CNR measures the contrast between the foreground and back-
ground pixel intensities in relation to the standard deviation of the background
pixel intensities. Larger CNR values imply a better contrast.

Two different versions of CNR are computed, using two different masks for
defining the foreground (vessel) and the background in XA images (Fig. 3). In
mask 1, as shown in Fig. 3 column 1, a 4 mm-wide image area around the
manually-labeled vessel centerline is defined as the foreground (the dark area in-
side white region); the background are its 3 mm-wide neighborhood area (white
region surrounding the vessel). This mask can be used to assess the local contrast
around vessels in XA. In mask 2, as shown in Fig. 3 column 3, everything outside
the foreground is considered background, which thus also evaluates the removal
of the diaphragm, guiding catheters, etc.. In our experiments, we randomly se-
lect 5 frames once from each sequence for the mask generation and compute the
average CNR of the 5 frames.

We compare the performance of our approach to 3 other related methods.
In [4], static background is eliminated by subtracting the median of the first 10
frames from each frame in the sequence. This method is referred to as MedSub-
tract 1. Second, we considered an advanced version of median subtraction by
firstly removing the breathing layer using morphological closing and then sub-
tracting the median. This is called MedSubtract 2 in the experiments. Third, a
conventional PCA technique is explored. The breathing layer is first removed to
generate the difference image and the background layer is later reconstructed
with the first principal component using PCA. This is referred to as Normal
PCA.

For the parameter λ in the formulation of Robust PCA, we use the value
suggested in [8]. All experiments were implemented in MATLAB 2013b on an
Intel Core i7-4800MQ 2.70 GHz computer with 16 GB RAM running Windows.

4 Results

Fig. 4 shows an example result of layer separation on one XA sequence. Note that
in the original image (Fig. 4(a)), the presence of the diaphragm, the vertebral
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Fig. 3: Two types of mask images. Background is defined as the white image
region, foreground is defined as the dark area within the white part: (Column
1) Mask 1 for one frame in the four XA sequences; (Column 2) Mask 1 overlaid
on the corresponding XA frames; (Column 3) Mask 2 for one frame in the four
XA sequences; (Column 4) Mask 2 overlaid on the corresponding XA frames.
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structures and the long guiding catheter segment makes extracting the vessels
challenging. In the vessel layer image (Fig. 4(d)), those structures are removed,
and the contrast between vessels and their neighborhood pixels is larger than in
the original image.

Fig. 5 presents the comparison of our proposed method (Row 5) to three

(a) (b) (c) (d)

Fig. 4: An example of layer separation: (a) the original image, (b) breathing
layer, (c) quasi-static background layer, and (d) vessel layer.

other background-removal methods (Row 2-4) applied on four XA sequences.
For each of the sequences, we selected a representative frame. It can be observed
that all the four methods increase the visibility of vessels in XA with better
contrast. However, the result of MedSubtract 1 method (Row 2) still presents
artifacts in the foreground due to the motion of diaphragm, whereas our method
successfully removes the diaphragm using morphological closing. Compared to
MedSubtract 2 (Row 3) and Normal PCA methods (Row 4), the method based
on Robust PCA performs better on removing quasi-static structures, such as the
guiding catheter segment in aorta (column 1-3) and stitches (column 4).

The CNR values of XA sequences and vessel layers are illustrated in Fig.
6. Compared to the original XA, as shown in both Fig. 6(a) and Fig. 6(b),
all methods improve the CNR values. For CNR 1, when only local contrast
around vessels is measured, Robust PCA method performs better than the other
approaches for patient 1 and 2, but has slightly lower CNR than Normal PCA
for patient 3 and 4. In the case that the removal of diaphragm and guiding
catheter is considered, as what CNR 2 indicates, Robust PCA is superior in all
four patients.

5 Discussion and Conclusion

We have developed an automatic method for layer separation of interventional
XA images, to enhance vessel visualization. The method separate XA images
into a breathing layer, a quasi-static background layer and a vessel layer using
morphological filtering and applying Robust PCA. The separation is evaluated
on four XA sequences, demonstrating better separation of the coronary arteries
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Fig. 5: Example frames of foreground images obtained by different background-
removal techniques applied on four XA sequences: (Column 1-4) The four differ-
ent XA sequences, (Row 1) The original image, (Row 2) MedSubtract 1, (Row 3)
MedSubtract 2, (Row 4) Normal PCA, (Row 5) our method using Robust PCA.
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Fig. 6: The average CNR over 5 randomly-chosen frames using two types of masks
for the four XA sequences.

and reduced inclusion of breathing or quasi-static structures compared to other
approaches.

Fig. 5 shows that the proposed method is able to improve the visibility of ves-
sels and performs better on representative frames of the four XA sequences. Fig.
6(a) shows that the Robust PCA method is advantageous over the two median
subtraction methods on improving the local contrast, and has similar perfor-
mance with Normal PCA. Fig. 6(b), which displays the global CNR measure,
shows that Robust PCA is superior on all four patients which indicates that the
superiority of Robust PCA to other approaches is more on removing respiratory
and quasi-static structures from XA to improve the contrast of vessels in the
whole image. This advantage could potentially reduce the generation of spurious
vessels when applying vessel extraction methods on XA.

Compared to original images, the Robust PCA method improves image qual-
ity in the vessel layer by removing breathing structures and background ob-
jects. Compared to the absolute-static background resulted from the median-
subtraction-based methods, Robust PCA models a quasi-static background with
small changes, which is more adaptive to the change of image content caused by
coronary motion. Normal PCA also models a flexible background , which could
be the reason why it has similar performance with Robust PCA. Compared to
Normal PCA, Robust PCA produces less residuals of guiding catheter in the
vessel layer after the removal of the background layer. The regularization pa-
rameter of Robust PCA enables better flexibility of balancing between moving
objects and background in layer separation. Compared to other related tech-
niques e.g. in [6][7], the main difference of the proposed method is that it does
not rely on motion field, therefore, no motion field is required to extract before
doing layer separation.

Several factors might have impact on CNR values. The masks defines the
background and foreground, therefore the mask-related factors could directly in-
fluence the CNR values, e.g. the width of the foreground or background, whether
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or not including small vessels or the guiding catheter distal segment in the fore-
ground. In addition, the number of the selected frames for mask generation from
each XA sequence might also be an important factor. More in-depth analysis of
these factors is part of the future work.

In conclusion, we proposed a novel layer separation method based on mor-
phological operation and Robust PCA. We also demonstrated that the method
improves the visibility of coronary arteries in XA and has advantages over sev-
eral other related approaches. In the future, we will assess this technique in
prospective settings and study its application in approaches that improve image
guidance in XA guided cardiac interventions.
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